MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod Structured version   Visualization version   GIF version

Theorem nfcprod 14641
Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14636 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2764 . . . . 5 𝑥
3 nfcprod.1 . . . . . . 7 𝑥𝐴
4 nfcv 2764 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3596 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfv 1843 . . . . . . . . 9 𝑥 𝑧 ≠ 0
7 nfcv 2764 . . . . . . . . . . 11 𝑥𝑛
8 nfcv 2764 . . . . . . . . . . 11 𝑥 ·
93nfcri 2758 . . . . . . . . . . . . 13 𝑥 𝑘𝐴
10 nfcprod.2 . . . . . . . . . . . . 13 𝑥𝐵
11 nfcv 2764 . . . . . . . . . . . . 13 𝑥1
129, 10, 11nfif 4115 . . . . . . . . . . . 12 𝑥if(𝑘𝐴, 𝐵, 1)
132, 12nfmpt 4746 . . . . . . . . . . 11 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
147, 8, 13nfseq 12811 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
15 nfcv 2764 . . . . . . . . . 10 𝑥
16 nfcv 2764 . . . . . . . . . 10 𝑥𝑧
1714, 15, 16nfbr 4699 . . . . . . . . 9 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
186, 17nfan 1828 . . . . . . . 8 𝑥(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
1918nfex 2154 . . . . . . 7 𝑥𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
204, 19nfrex 3007 . . . . . 6 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
21 nfcv 2764 . . . . . . . 8 𝑥𝑚
2221, 8, 13nfseq 12811 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
23 nfcv 2764 . . . . . . 7 𝑥𝑦
2422, 15, 23nfbr 4699 . . . . . 6 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
255, 20, 24nf3an 1831 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
262, 25nfrex 3007 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
27 nfcv 2764 . . . . 5 𝑥
28 nfcv 2764 . . . . . . . 8 𝑥𝑓
29 nfcv 2764 . . . . . . . 8 𝑥(1...𝑚)
3028, 29, 3nff1o 6135 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
31 nfcv 2764 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
3231, 10nfcsb 3551 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
3327, 32nfmpt 4746 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3411, 8, 33nfseq 12811 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3534, 21nffv 6198 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3635nfeq2 2780 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3730, 36nfan 1828 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3837nfex 2154 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3927, 38nfrex 3007 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
4026, 39nfor 1834 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
4140nfiota 5855 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
421, 41nfcxfr 2762 1 𝑥𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wnfc 2751  wne 2794  wrex 2913  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cio 5849  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   · cmul 9941  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-prod 14636
This theorem is referenced by:  fprod2dlem  14710  fprodcom2  14714  fprodcom2OLD  14715  fprodcn  39832  fprodcncf  40114
  Copyright terms: Public domain W3C validator