MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod Structured version   Visualization version   Unicode version

Theorem nfcprod 14641
Description: Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1  |-  F/_ x A
nfcprod.2  |-  F/_ x B
Assertion
Ref Expression
nfcprod  |-  F/_ x prod_ k  e.  A  B
Distinct variable group:    x, k
Allowed substitution hints:    A( x, k)    B( x, k)

Proof of Theorem nfcprod
Dummy variables  f  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 14636 . 2  |-  prod_ k  e.  A  B  =  ( iota y ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. z ( z  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 nfcv 2764 . . . . 5  |-  F/_ x ZZ
3 nfcprod.1 . . . . . . 7  |-  F/_ x A
4 nfcv 2764 . . . . . . 7  |-  F/_ x
( ZZ>= `  m )
53, 4nfss 3596 . . . . . 6  |-  F/ x  A  C_  ( ZZ>= `  m
)
6 nfv 1843 . . . . . . . . 9  |-  F/ x  z  =/=  0
7 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x n
8 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x  x.
93nfcri 2758 . . . . . . . . . . . . 13  |-  F/ x  k  e.  A
10 nfcprod.2 . . . . . . . . . . . . 13  |-  F/_ x B
11 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x
1
129, 10, 11nfif 4115 . . . . . . . . . . . 12  |-  F/_ x if ( k  e.  A ,  B ,  1 )
132, 12nfmpt 4746 . . . . . . . . . . 11  |-  F/_ x
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
147, 8, 13nfseq 12811 . . . . . . . . . 10  |-  F/_ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
15 nfcv 2764 . . . . . . . . . 10  |-  F/_ x  ~~>
16 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
z
1714, 15, 16nfbr 4699 . . . . . . . . 9  |-  F/ x  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z
186, 17nfan 1828 . . . . . . . 8  |-  F/ x
( z  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
1918nfex 2154 . . . . . . 7  |-  F/ x E. z ( z  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
204, 19nfrex 3007 . . . . . 6  |-  F/ x E. n  e.  ( ZZ>=
`  m ) E. z ( z  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )
21 nfcv 2764 . . . . . . . 8  |-  F/_ x m
2221, 8, 13nfseq 12811 . . . . . . 7  |-  F/_ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )
23 nfcv 2764 . . . . . . 7  |-  F/_ x
y
2422, 15, 23nfbr 4699 . . . . . 6  |-  F/ x  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y
255, 20, 24nf3an 1831 . . . . 5  |-  F/ x
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. z
( z  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
262, 25nfrex 3007 . . . 4  |-  F/ x E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. z
( z  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
27 nfcv 2764 . . . . 5  |-  F/_ x NN
28 nfcv 2764 . . . . . . . 8  |-  F/_ x
f
29 nfcv 2764 . . . . . . . 8  |-  F/_ x
( 1 ... m
)
3028, 29, 3nff1o 6135 . . . . . . 7  |-  F/ x  f : ( 1 ... m ) -1-1-onto-> A
31 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x
( f `  n
)
3231, 10nfcsb 3551 . . . . . . . . . . 11  |-  F/_ x [_ ( f `  n
)  /  k ]_ B
3327, 32nfmpt 4746 . . . . . . . . . 10  |-  F/_ x
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
3411, 8, 33nfseq 12811 . . . . . . . . 9  |-  F/_ x  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
3534, 21nffv 6198 . . . . . . . 8  |-  F/_ x
(  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )
3635nfeq2 2780 . . . . . . 7  |-  F/ x  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3730, 36nfan 1828 . . . . . 6  |-  F/ x
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3837nfex 2154 . . . . 5  |-  F/ x E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
3927, 38nfrex 3007 . . . 4  |-  F/ x E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
4026, 39nfor 1834 . . 3  |-  F/ x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. z ( z  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
4140nfiota 5855 . 2  |-  F/_ x
( iota y ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. z ( z  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  z )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
421, 41nfcxfr 2762 1  |-  F/_ x prod_ k  e.  A  B
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   E.wrex 2913   [_csb 3533    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-prod 14636
This theorem is referenced by:  fprod2dlem  14710  fprodcom2  14714  fprodcom2OLD  14715  fprodcn  39832  fprodcncf  40114
  Copyright terms: Public domain W3C validator