| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcprod | Structured version Visualization version Unicode version | ||
| Description: Bound-variable hypothesis
builder for product: if |
| Ref | Expression |
|---|---|
| nfcprod.1 |
|
| nfcprod.2 |
|
| Ref | Expression |
|---|---|
| nfcprod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prod 14636 |
. 2
| |
| 2 | nfcv 2764 |
. . . . 5
| |
| 3 | nfcprod.1 |
. . . . . . 7
| |
| 4 | nfcv 2764 |
. . . . . . 7
| |
| 5 | 3, 4 | nfss 3596 |
. . . . . 6
|
| 6 | nfv 1843 |
. . . . . . . . 9
| |
| 7 | nfcv 2764 |
. . . . . . . . . . 11
| |
| 8 | nfcv 2764 |
. . . . . . . . . . 11
| |
| 9 | 3 | nfcri 2758 |
. . . . . . . . . . . . 13
|
| 10 | nfcprod.2 |
. . . . . . . . . . . . 13
| |
| 11 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 12 | 9, 10, 11 | nfif 4115 |
. . . . . . . . . . . 12
|
| 13 | 2, 12 | nfmpt 4746 |
. . . . . . . . . . 11
|
| 14 | 7, 8, 13 | nfseq 12811 |
. . . . . . . . . 10
|
| 15 | nfcv 2764 |
. . . . . . . . . 10
| |
| 16 | nfcv 2764 |
. . . . . . . . . 10
| |
| 17 | 14, 15, 16 | nfbr 4699 |
. . . . . . . . 9
|
| 18 | 6, 17 | nfan 1828 |
. . . . . . . 8
|
| 19 | 18 | nfex 2154 |
. . . . . . 7
|
| 20 | 4, 19 | nfrex 3007 |
. . . . . 6
|
| 21 | nfcv 2764 |
. . . . . . . 8
| |
| 22 | 21, 8, 13 | nfseq 12811 |
. . . . . . 7
|
| 23 | nfcv 2764 |
. . . . . . 7
| |
| 24 | 22, 15, 23 | nfbr 4699 |
. . . . . 6
|
| 25 | 5, 20, 24 | nf3an 1831 |
. . . . 5
|
| 26 | 2, 25 | nfrex 3007 |
. . . 4
|
| 27 | nfcv 2764 |
. . . . 5
| |
| 28 | nfcv 2764 |
. . . . . . . 8
| |
| 29 | nfcv 2764 |
. . . . . . . 8
| |
| 30 | 28, 29, 3 | nff1o 6135 |
. . . . . . 7
|
| 31 | nfcv 2764 |
. . . . . . . . . . . 12
| |
| 32 | 31, 10 | nfcsb 3551 |
. . . . . . . . . . 11
|
| 33 | 27, 32 | nfmpt 4746 |
. . . . . . . . . 10
|
| 34 | 11, 8, 33 | nfseq 12811 |
. . . . . . . . 9
|
| 35 | 34, 21 | nffv 6198 |
. . . . . . . 8
|
| 36 | 35 | nfeq2 2780 |
. . . . . . 7
|
| 37 | 30, 36 | nfan 1828 |
. . . . . 6
|
| 38 | 37 | nfex 2154 |
. . . . 5
|
| 39 | 27, 38 | nfrex 3007 |
. . . 4
|
| 40 | 26, 39 | nfor 1834 |
. . 3
|
| 41 | 40 | nfiota 5855 |
. 2
|
| 42 | 1, 41 | nfcxfr 2762 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-prod 14636 |
| This theorem is referenced by: fprod2dlem 14710 fprodcom2 14714 fprodcom2OLD 14715 fprodcn 39832 fprodcncf 40114 |
| Copyright terms: Public domain | W3C validator |