![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfimdetndef | Structured version Visualization version GIF version |
Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.) |
Ref | Expression |
---|---|
nfimdetndef.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
Ref | Expression |
---|---|
nfimdetndef | ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfimdetndef.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | eqid 2622 | . . 3 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
3 | eqid 2622 | . . 3 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
4 | eqid 2622 | . . 3 ⊢ (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) | |
5 | eqid 2622 | . . 3 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
6 | eqid 2622 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
7 | eqid 2622 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | eqid 2622 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetfval 20392 | . 2 ⊢ 𝐷 = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
10 | df-nel 2898 | . . . . . . 7 ⊢ (𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin) | |
11 | 10 | biimpi 206 | . . . . . 6 ⊢ (𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin) |
12 | 11 | intnanrd 963 | . . . . 5 ⊢ (𝑁 ∉ Fin → ¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
13 | matbas0 20216 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∉ Fin → (Base‘(𝑁 Mat 𝑅)) = ∅) |
15 | 14 | mpteq1d 4738 | . . 3 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
16 | mpt0 6021 | . . 3 ⊢ (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅ | |
17 | 15, 16 | syl6eq 2672 | . 2 ⊢ (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) = ∅) |
18 | 9, 17 | syl5eq 2668 | 1 ⊢ (𝑁 ∉ Fin → 𝐷 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 Vcvv 3200 ∅c0 3915 ↦ cmpt 4729 ∘ ccom 5118 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 Basecbs 15857 .rcmulr 15942 Σg cgsu 16101 SymGrpcsymg 17797 pmSgncpsgn 17909 mulGrpcmgp 18489 ℤRHomczrh 19848 Mat cmat 20213 maDet cmdat 20390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-slot 15861 df-base 15863 df-mat 20214 df-mdet 20391 |
This theorem is referenced by: mdetfval1 20396 |
Copyright terms: Public domain | W3C validator |