MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidpropd Structured version   Visualization version   GIF version

Theorem grpidpropd 17261
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
grpidpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpidpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpidpropd (𝜑 → (0g𝐾) = (0g𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem grpidpropd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
21eqeq1d 2624 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = 𝑦 ↔ (𝑥(+g𝐿)𝑦) = 𝑦))
31oveqrspc2v 6673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
43oveqrspc2v 6673 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
54ancom2s 844 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
65eqeq1d 2624 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(+g𝐾)𝑥) = 𝑦 ↔ (𝑦(+g𝐿)𝑥) = 𝑦))
72, 6anbi12d 747 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
87anassrs 680 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
98ralbidva 2985 . . . . 5 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
109pm5.32da 673 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
11 grpidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
1211eleq2d 2687 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
1311raleqdv 3144 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
1412, 13anbi12d 747 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
15 grpidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1615eleq2d 2687 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐿)))
1715raleqdv 3144 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
1816, 17anbi12d 747 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
1910, 14, 183bitr3d 298 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
2019iotabidv 5872 . 2 (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
21 eqid 2622 . . 3 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2622 . . 3 (+g𝐾) = (+g𝐾)
23 eqid 2622 . . 3 (0g𝐾) = (0g𝐾)
2421, 22, 23grpidval 17260 . 2 (0g𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
25 eqid 2622 . . 3 (Base‘𝐿) = (Base‘𝐿)
26 eqid 2622 . . 3 (+g𝐿) = (+g𝐿)
27 eqid 2622 . . 3 (0g𝐿) = (0g𝐿)
2825, 26, 27grpidval 17260 . 2 (0g𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
2920, 24, 283eqtr4g 2681 1 (𝜑 → (0g𝐾) = (0g𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cio 5849  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-0g 16102
This theorem is referenced by:  gsumpropd  17272  gsumpropd2lem  17273  mhmpropd  17341  grppropd  17437  grpinvpropd  17490  mulgpropd  17584  prds1  18614  rngidpropd  18695  drngprop  18758  drngpropd  18774  abvpropd  18842  lbspropd  19099  sralmod0  19188  opsr0  19588  mplbaspropd  19607  ply1mpl0  19625  phlpropd  20000  mat0  20223  nmpropd  22398  nmpropd2  22399  tng0  22447  mdegpropd  23844  ply1divalg2  23898  resv0g  29836  zlm0  30006  hlhils0  37237  hlhil0  37247
  Copyright terms: Public domain W3C validator