| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nndomo | Structured version Visualization version GIF version | ||
| Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| nndomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | php2 8145 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
| 2 | 1 | ex 450 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
| 3 | domnsym 8086 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 4 | 2, 3 | nsyli 155 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 5 | 4 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
| 6 | nnord 7073 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 7 | nnord 7073 | . . . 4 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
| 8 | ordtri1 5756 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 9 | ordelpss 5751 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
| 10 | 9 | ancoms 469 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 11 | 10 | notbid 308 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 12 | 8, 11 | bitrd 268 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 13 | 6, 7, 12 | syl2an 494 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
| 14 | 5, 13 | sylibrd 249 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 15 | ssdomg 8001 | . . 3 ⊢ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 16 | 15 | adantl 482 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 17 | 14, 16 | impbid 202 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ⊆ wss 3574 ⊊ wpss 3575 class class class wbr 4653 Ord word 5722 ωcom 7065 ≼ cdom 7953 ≺ csdm 7954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: nnsdomo 8155 |
| Copyright terms: Public domain | W3C validator |