Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv2 Structured version   Visualization version   GIF version

Theorem ntrneifv2 38378
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv2 (𝜑 → (𝐹𝑁) = 𝐼)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv2
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 38373 . . . . 5 (𝜑𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
52, 3, 1ntrneinex 38375 . . . . 5 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵))
6 dff1o3 6143 . . . . . . . 8 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ↔ (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ Fun 𝐹))
76simprbi 480 . . . . . . 7 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → Fun 𝐹)
87adantr 481 . . . . . 6 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → Fun 𝐹)
9 df-rn 5125 . . . . . . . . 9 ran 𝐹 = dom 𝐹
10 f1ofo 6144 . . . . . . . . . 10 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → 𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵))
11 forn 6118 . . . . . . . . . 10 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
1210, 11syl 17 . . . . . . . . 9 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
139, 12syl5eqr 2670 . . . . . . . 8 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → dom 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
1413eleq2d 2687 . . . . . . 7 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → (𝑁 ∈ dom 𝐹𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)))
1514biimpar 502 . . . . . 6 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → 𝑁 ∈ dom 𝐹)
168, 15jca 554 . . . . 5 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → (Fun 𝐹𝑁 ∈ dom 𝐹))
174, 5, 16syl2anc 693 . . . 4 (𝜑 → (Fun 𝐹𝑁 ∈ dom 𝐹))
18 funbrfvb 6238 . . . 4 ((Fun 𝐹𝑁 ∈ dom 𝐹) → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
1917, 18syl 17 . . 3 (𝜑 → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
202, 3, 1ntrneiiex 38374 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
21 brcnvg 5303 . . . 4 ((𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝑁𝐹𝐼𝐼𝐹𝑁))
225, 20, 21syl2anc 693 . . 3 (𝜑 → (𝑁𝐹𝐼𝐼𝐹𝑁))
2319, 22bitrd 268 . 2 (𝜑 → ((𝐹𝑁) = 𝐼𝐼𝐹𝑁))
241, 23mpbird 247 1 (𝜑 → (𝐹𝑁) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  Fun wfun 5882  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator