Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv2 Structured version   Visualization version   Unicode version

Theorem ntrneifv2 38378
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator,  F, then the function value of converse of  F is the interior function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
ntrnei.f  |-  F  =  ( ~P B O B )
ntrnei.r  |-  ( ph  ->  I F N )
Assertion
Ref Expression
ntrneifv2  |-  ( ph  ->  ( `' F `  N )  =  I )
Distinct variable groups:    B, i,
j, k, l, m    ph, i, j, k, l
Allowed substitution hints:    ph( m)    F( i, j, k, m, l)    I( i, j, k, m, l)    N( i, j, k, m, l)    O( i, j, k, m, l)

Proof of Theorem ntrneifv2
StepHypRef Expression
1 ntrnei.r . 2  |-  ( ph  ->  I F N )
2 ntrnei.o . . . . . 6  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
3 ntrnei.f . . . . . 6  |-  F  =  ( ~P B O B )
42, 3, 1ntrneif1o 38373 . . . . 5  |-  ( ph  ->  F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B ) )
52, 3, 1ntrneinex 38375 . . . . 5  |-  ( ph  ->  N  e.  ( ~P ~P B  ^m  B
) )
6 dff1o3 6143 . . . . . . . 8  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  <->  ( F :
( ~P B  ^m  ~P B ) -onto-> ( ~P ~P B  ^m  B
)  /\  Fun  `' F
) )
76simprbi 480 . . . . . . 7  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  ->  Fun  `' F
)
87adantr 481 . . . . . 6  |-  ( ( F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B )  /\  N  e.  ( ~P ~P B  ^m  B ) )  ->  Fun  `' F )
9 df-rn 5125 . . . . . . . . 9  |-  ran  F  =  dom  `' F
10 f1ofo 6144 . . . . . . . . . 10  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  ->  F :
( ~P B  ^m  ~P B ) -onto-> ( ~P ~P B  ^m  B
) )
11 forn 6118 . . . . . . . . . 10  |-  ( F : ( ~P B  ^m  ~P B ) -onto-> ( ~P ~P B  ^m  B )  ->  ran  F  =  ( ~P ~P B  ^m  B ) )
1210, 11syl 17 . . . . . . . . 9  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  ->  ran  F  =  ( ~P ~P B  ^m  B ) )
139, 12syl5eqr 2670 . . . . . . . 8  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  ->  dom  `' F  =  ( ~P ~P B  ^m  B ) )
1413eleq2d 2687 . . . . . . 7  |-  ( F : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P ~P B  ^m  B
)  ->  ( N  e.  dom  `' F  <->  N  e.  ( ~P ~P B  ^m  B ) ) )
1514biimpar 502 . . . . . 6  |-  ( ( F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B )  /\  N  e.  ( ~P ~P B  ^m  B ) )  ->  N  e.  dom  `' F
)
168, 15jca 554 . . . . 5  |-  ( ( F : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P ~P B  ^m  B )  /\  N  e.  ( ~P ~P B  ^m  B ) )  -> 
( Fun  `' F  /\  N  e.  dom  `' F ) )
174, 5, 16syl2anc 693 . . . 4  |-  ( ph  ->  ( Fun  `' F  /\  N  e.  dom  `' F ) )
18 funbrfvb 6238 . . . 4  |-  ( ( Fun  `' F  /\  N  e.  dom  `' F
)  ->  ( ( `' F `  N )  =  I  <->  N `' F I ) )
1917, 18syl 17 . . 3  |-  ( ph  ->  ( ( `' F `  N )  =  I  <-> 
N `' F I ) )
202, 3, 1ntrneiiex 38374 . . . 4  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
21 brcnvg 5303 . . . 4  |-  ( ( N  e.  ( ~P ~P B  ^m  B
)  /\  I  e.  ( ~P B  ^m  ~P B ) )  -> 
( N `' F I 
<->  I F N ) )
225, 20, 21syl2anc 693 . . 3  |-  ( ph  ->  ( N `' F I 
<->  I F N ) )
2319, 22bitrd 268 . 2  |-  ( ph  ->  ( ( `' F `  N )  =  I  <-> 
I F N ) )
241, 23mpbird 247 1  |-  ( ph  ->  ( `' F `  N )  =  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   Fun wfun 5882   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator