Proof of Theorem ntrneik13
| Step | Hyp | Ref
| Expression |
| 1 | | dfss3 3592 |
. . . . . . . . 9
⊢ ((𝐼‘(𝑠 ∩ 𝑡)) ⊆ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) |
| 2 | | ntrnei.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 3 | | ntrnei.f |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| 4 | | ntrnei.r |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼𝐹𝑁) |
| 5 | 2, 3, 4 | ntrneiiex 38374 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
| 6 | | elmapi 7879 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚
𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 8 | 7 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 9 | 2, 3, 4 | ntrneibex 38371 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | 9 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
| 11 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
| 12 | | elpwi 4168 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵) |
| 13 | | ssinss1 3841 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ⊆ 𝐵 → (𝑠 ∩ 𝑡) ⊆ 𝐵) |
| 14 | 11, 12, 13 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠 ∩ 𝑡) ⊆ 𝐵) |
| 15 | 10, 14 | sselpwd 4807 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠 ∩ 𝑡) ∈ 𝒫 𝐵) |
| 16 | 8, 15 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠 ∩ 𝑡)) ∈ 𝒫 𝐵) |
| 17 | 16 | elpwid 4170 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠 ∩ 𝑡)) ⊆ 𝐵) |
| 18 | | ralss 3668 |
. . . . . . . . . 10
⊢ ((𝐼‘(𝑠 ∩ 𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) → 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))))) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) → 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))))) |
| 20 | 1, 19 | syl5bb 272 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠 ∩ 𝑡)) ⊆ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) → 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))))) |
| 21 | | dfss3 3592 |
. . . . . . . . 9
⊢ (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))) |
| 22 | 7 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
| 23 | 22 | elpwid 4170 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ⊆ 𝐵) |
| 24 | | ssinss1 3841 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝑠) ⊆ 𝐵 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) |
| 26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) |
| 27 | | ralss 3668 |
. . . . . . . . . 10
⊢ (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) |
| 29 | 21, 28 | syl5bb 272 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) |
| 30 | 20, 29 | anbi12d 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝑠 ∩ 𝑡)) ⊆ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ∧ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡))) ↔ (∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) → 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)))))) |
| 31 | | eqss 3618 |
. . . . . . 7
⊢ ((𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ((𝐼‘(𝑠 ∩ 𝑡)) ⊆ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ∧ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)))) |
| 32 | | ralbiim 3069 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) ↔ (∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) → 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) |
| 33 | 30, 31, 32 | 3bitr4g 303 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))))) |
| 34 | 4 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
| 35 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 36 | 9 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
| 37 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
| 38 | 37 | elpwid 4170 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ⊆ 𝐵) |
| 39 | 38, 13 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∩ 𝑡) ⊆ 𝐵) |
| 40 | 36, 39 | sselpwd 4807 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑠 ∩ 𝑡) ∈ 𝒫 𝐵) |
| 41 | 40 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑠 ∩ 𝑡) ∈ 𝒫 𝐵) |
| 42 | 2, 3, 34, 35, 41 | ntrneiel 38379 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥))) |
| 43 | | elin 3796 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ (𝑥 ∈ (𝐼‘𝑠) ∧ 𝑥 ∈ (𝐼‘𝑡))) |
| 44 | | simpllr 799 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ∈ 𝒫 𝐵) |
| 45 | 2, 3, 34, 35, 44 | ntrneiel 38379 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑥))) |
| 46 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑡 ∈ 𝒫 𝐵) |
| 47 | 2, 3, 34, 35, 46 | ntrneiel 38379 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑡) ↔ 𝑡 ∈ (𝑁‘𝑥))) |
| 48 | 45, 47 | anbi12d 747 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ (𝐼‘𝑠) ∧ 𝑥 ∈ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) |
| 49 | 43, 48 | syl5bb 272 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) |
| 50 | 42, 49 | bibi12d 335 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) ↔ ((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 51 | 50 | ralbidva 2985 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ 𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 52 | 33, 51 | bitrd 268 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 53 | 52 | ralbidva 2985 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 54 | | ralcom 3098 |
. . . 4
⊢
(∀𝑡 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) |
| 55 | 53, 54 | syl6bb 276 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 56 | 55 | ralbidva 2985 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |
| 57 | | ralcom 3098 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) |
| 58 | 56, 57 | syl6bb 276 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) |