![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.f | ⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6657 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 substr 〈0, (𝑁 − 2)〉) = (𝑊 substr 〈0, (𝑁 − 2)〉)) | |
2 | fveq1 6190 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
3 | 1, 2 | opeq12d 4410 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 substr 〈0, (𝑁 − 2)〉), (𝑢‘(𝑁 − 1))〉) | |
5 | opex 4932 | . 2 ⊢ 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 6282 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 substr 〈0, (𝑁 − 2)〉), (𝑊‘(𝑁 − 1))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 〈cop 4183 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 0cc0 9936 1c1 9937 − cmin 10266 ℕcn 11020 2c2 11070 ℤ≥cuz 11687 substr csubstr 13295 Vtxcvtx 25874 ClWWalksN cclwwlksn 26876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
This theorem is referenced by: numclwlk1lem2f1 27227 numclwlk1lem2fo 27228 |
Copyright terms: Public domain | W3C validator |