MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2fv Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2fv 27226
Description: Value of the function  T. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
numclwwlk.t  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
Assertion
Ref Expression
numclwlk1lem2fv  |-  ( W  e.  ( X C N )  ->  ( T `  W )  =  <. ( W substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( W `  ( N  -  1
) ) >. )
Distinct variable groups:    n, G, u, v, w    n, N, u, v, w    n, V, v, w    n, X, u, v, w    w, F    w, W    u, C    u, F    u, V    u, W
Allowed substitution hints:    C( w, v, n)    T( w, v, u, n)    F( v, n)    W( v, n)

Proof of Theorem numclwlk1lem2fv
StepHypRef Expression
1 oveq1 6657 . . 3  |-  ( u  =  W  ->  (
u substr  <. 0 ,  ( N  -  2 )
>. )  =  ( W substr  <. 0 ,  ( N  -  2 )
>. ) )
2 fveq1 6190 . . 3  |-  ( u  =  W  ->  (
u `  ( N  -  1 ) )  =  ( W `  ( N  -  1
) ) )
31, 2opeq12d 4410 . 2  |-  ( u  =  W  ->  <. (
u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.  =  <. ( W substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( W `  ( N  -  1
) ) >. )
4 numclwwlk.t . 2  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
5 opex 4932 . 2  |-  <. ( W substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( W `
 ( N  - 
1 ) ) >.  e.  _V
63, 4, 5fvmpt 6282 1  |-  ( W  e.  ( X C N )  ->  ( T `  W )  =  <. ( W substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( W `  ( N  -  1
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   ZZ>=cuz 11687   substr csubstr 13295  Vtxcvtx 25874   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  numclwlk1lem2f1  27227  numclwlk1lem2fo  27228
  Copyright terms: Public domain W3C validator