MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovgel Structured version   Visualization version   GIF version

Theorem numclwwlkovgel 27221
Description: Properties of an element of the value of operation 𝐶. (Contributed by Alexander van der Vekens, 24-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypothesis
Ref Expression
numclwwlkovg.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
numclwwlkovgel ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑣,𝑛)

Proof of Theorem numclwwlkovgel
StepHypRef Expression
1 numclwwlkovg.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
21numclwwlkovg 27220 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
32eleq2d 2687 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))
4 fveq1 6190 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
54eqeq1d 2624 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
6 fveq1 6190 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2)))
76, 4eqeq12d 2637 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘(𝑁 − 2)) = (𝑤‘0) ↔ (𝑊‘(𝑁 − 2)) = (𝑊‘0)))
85, 7anbi12d 747 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) ↔ ((𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))))
98elrab 3363 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))))
103, 9syl6bb 276 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)))))
11 3anass 1042 . 2 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))))
1210, 11syl6bbr 278 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ (𝑋𝐶𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋 ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  cmin 10266  2c2 11070  cuz 11687   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  numclwlk1lem2f1  27227
  Copyright terms: Public domain W3C validator