| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 2 | 1 | obsne0 20069 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ (0g‘𝑊)) |
| 3 | 2 | 3adant2 1080 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ≠ (0g‘𝑊)) |
| 4 | | elin 3796 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐶 ∩ ( ⊥ ‘𝐶)) ↔ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
| 5 | | obsrcl 20067 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝑊 ∈ PreHil) |
| 7 | | phllmod 19975 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝑊 ∈ LMod) |
| 9 | | simp2 1062 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ 𝐵) |
| 10 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 11 | 10 | obsss 20068 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
| 12 | 11 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ (Base‘𝑊)) |
| 13 | 9, 12 | sstrd 3613 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ (Base‘𝑊)) |
| 14 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 15 | 10, 14 | lspssid 18985 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶)) |
| 16 | 8, 13, 15 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶)) |
| 17 | | ssrin 3838 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ ((LSpan‘𝑊)‘𝐶) → (𝐶 ∩ ( ⊥ ‘𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶))) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ ( ⊥ ‘𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶))) |
| 19 | | obselocv.o |
. . . . . . . . . . . . . 14
⊢ ⊥ =
(ocv‘𝑊) |
| 20 | 10, 19, 14 | ocvlsp 20020 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ⊥
‘((LSpan‘𝑊)‘𝐶)) = ( ⊥ ‘𝐶)) |
| 21 | 6, 13, 20 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ( ⊥
‘((LSpan‘𝑊)‘𝐶)) = ( ⊥ ‘𝐶)) |
| 22 | 21 | ineq2d 3814 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶))) |
| 23 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 24 | 10, 23, 14 | lspcl 18976 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) |
| 25 | 8, 13, 24 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) |
| 26 | 19, 23, 1 | ocvin 20018 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ PreHil ∧
((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = {(0g‘𝑊)}) |
| 27 | 6, 25, 26 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥
‘((LSpan‘𝑊)‘𝐶))) = {(0g‘𝑊)}) |
| 28 | 22, 27 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ⊥ ‘𝐶)) = {(0g‘𝑊)}) |
| 29 | 18, 28 | sseqtrd 3641 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ ( ⊥ ‘𝐶)) ⊆
{(0g‘𝑊)}) |
| 30 | 29 | sseld 3602 |
. . . . . . . 8
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ (𝐶 ∩ ( ⊥ ‘𝐶)) → 𝐴 ∈ {(0g‘𝑊)})) |
| 31 | 4, 30 | syl5bir 233 |
. . . . . . 7
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)) → 𝐴 ∈ {(0g‘𝑊)})) |
| 32 | | elsni 4194 |
. . . . . . 7
⊢ (𝐴 ∈
{(0g‘𝑊)}
→ 𝐴 =
(0g‘𝑊)) |
| 33 | 31, 32 | syl6 35 |
. . . . . 6
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)) → 𝐴 = (0g‘𝑊))) |
| 34 | 33 | necon3ad 2807 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ≠ (0g‘𝑊) → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶)))) |
| 35 | 3, 34 | mpd 15 |
. . . 4
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
| 36 | | imnan 438 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘𝐶)) ↔ ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘𝐶))) |
| 37 | 35, 36 | sylibr 224 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘𝐶))) |
| 38 | 37 | con2d 129 |
. 2
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) → ¬ 𝐴 ∈ 𝐶)) |
| 39 | | simpr 477 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 40 | | eleq1 2689 |
. . . . . . 7
⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) |
| 41 | 39, 40 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (𝐴 = 𝑥 → 𝐴 ∈ 𝐶)) |
| 42 | 41 | con3d 148 |
. . . . 5
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 = 𝑥)) |
| 43 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ (OBasis‘𝑊)) |
| 44 | | simpl3 1066 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| 45 | 9 | sselda 3603 |
. . . . . . 7
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐵) |
| 46 | | eqid 2622 |
. . . . . . . 8
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
| 47 | | eqid 2622 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 48 | | eqid 2622 |
. . . . . . . 8
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
| 49 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 50 | 10, 46, 47, 48, 49 | obsip 20065 |
. . . . . . 7
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊)))) |
| 51 | 43, 44, 45, 50 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊)))) |
| 52 | | iffalse 4095 |
. . . . . . 7
⊢ (¬
𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊))) =
(0g‘(Scalar‘𝑊))) |
| 53 | 52 | eqeq2d 2632 |
. . . . . 6
⊢ (¬
𝐴 = 𝑥 → ((𝐴(·𝑖‘𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)),
(0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 54 | 51, 53 | syl5ibcom 235 |
. . . . 5
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 55 | 42, 54 | syld 47 |
. . . 4
⊢ (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ 𝐶) → (¬ 𝐴 ∈ 𝐶 → (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 56 | 55 | ralrimdva 2969 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 57 | | simp3 1063 |
. . . . 5
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
| 58 | 12, 57 | sseldd 3604 |
. . . 4
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑊)) |
| 59 | 10, 46, 47, 49, 19 | elocv 20012 |
. . . . . 6
⊢ (𝐴 ∈ ( ⊥ ‘𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 60 | | df-3an 1039 |
. . . . . 6
⊢ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 61 | 59, 60 | bitri 264 |
. . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 62 | 61 | baib 944 |
. . . 4
⊢ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 63 | 13, 58, 62 | syl2anc 693 |
. . 3
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ∀𝑥 ∈ 𝐶 (𝐴(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) |
| 64 | 56, 63 | sylibrd 249 |
. 2
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ ( ⊥ ‘𝐶))) |
| 65 | 38, 64 | impbid 202 |
1
⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ ( ⊥ ‘𝐶) ↔ ¬ 𝐴 ∈ 𝐶)) |