MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsip Structured version   Visualization version   Unicode version

Theorem obsip 20065
Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v  |-  V  =  ( Base `  W
)
isobs.h  |-  .,  =  ( .i `  W )
isobs.f  |-  F  =  (Scalar `  W )
isobs.u  |-  .1.  =  ( 1r `  F )
isobs.z  |-  .0.  =  ( 0g `  F )
Assertion
Ref Expression
obsip  |-  ( ( B  e.  (OBasis `  W )  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .,  Q )  =  if ( P  =  Q ,  .1.  ,  .0.  ) )

Proof of Theorem obsip
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isobs.v . . . . . 6  |-  V  =  ( Base `  W
)
2 isobs.h . . . . . 6  |-  .,  =  ( .i `  W )
3 isobs.f . . . . . 6  |-  F  =  (Scalar `  W )
4 isobs.u . . . . . 6  |-  .1.  =  ( 1r `  F )
5 isobs.z . . . . . 6  |-  .0.  =  ( 0g `  F )
6 eqid 2622 . . . . . 6  |-  ( ocv `  W )  =  ( ocv `  W )
7 eqid 2622 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
81, 2, 3, 4, 5, 6, 7isobs 20064 . . . . 5  |-  ( B  e.  (OBasis `  W
)  <->  ( W  e. 
PreHil  /\  B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  ( ( ocv `  W ) `  B
)  =  { ( 0g `  W ) } ) ) )
98simp3bi 1078 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  ( A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (
( ocv `  W
) `  B )  =  { ( 0g `  W ) } ) )
109simpld 475 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  ) )
11 oveq1 6657 . . . . 5  |-  ( x  =  P  ->  (
x  .,  y )  =  ( P  .,  y ) )
12 eqeq1 2626 . . . . . 6  |-  ( x  =  P  ->  (
x  =  y  <->  P  =  y ) )
1312ifbid 4108 . . . . 5  |-  ( x  =  P  ->  if ( x  =  y ,  .1.  ,  .0.  )  =  if ( P  =  y ,  .1.  ,  .0.  ) )
1411, 13eqeq12d 2637 . . . 4  |-  ( x  =  P  ->  (
( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  <->  ( P  .,  y )  =  if ( P  =  y ,  .1.  ,  .0.  ) ) )
15 oveq2 6658 . . . . 5  |-  ( y  =  Q  ->  ( P  .,  y )  =  ( P  .,  Q
) )
16 eqeq2 2633 . . . . . 6  |-  ( y  =  Q  ->  ( P  =  y  <->  P  =  Q ) )
1716ifbid 4108 . . . . 5  |-  ( y  =  Q  ->  if ( P  =  y ,  .1.  ,  .0.  )  =  if ( P  =  Q ,  .1.  ,  .0.  ) )
1815, 17eqeq12d 2637 . . . 4  |-  ( y  =  Q  ->  (
( P  .,  y
)  =  if ( P  =  y ,  .1.  ,  .0.  )  <->  ( P  .,  Q )  =  if ( P  =  Q ,  .1.  ,  .0.  ) ) )
1914, 18rspc2v 3322 . . 3  |-  ( ( P  e.  B  /\  Q  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  ->  ( P  .,  Q )  =  if ( P  =  Q ,  .1.  ,  .0.  ) ) )
2010, 19syl5com 31 . 2  |-  ( B  e.  (OBasis `  W
)  ->  ( ( P  e.  B  /\  Q  e.  B )  ->  ( P  .,  Q
)  =  if ( P  =  Q ,  .1.  ,  .0.  ) ) )
21203impib 1262 1  |-  ( ( B  e.  (OBasis `  W )  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .,  Q )  =  if ( P  =  Q ,  .1.  ,  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ifcif 4086   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .icip 15946   0gc0g 16100   1rcur 18501   PreHilcphl 19969   ocvcocv 20004  OBasiscobs 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-obs 20049
This theorem is referenced by:  obsipid  20066  obselocv  20072
  Copyright terms: Public domain W3C validator