Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfn Structured version   Visualization version   GIF version

Theorem ofcfn 30162
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfn (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) Fn 𝐴)

Proof of Theorem ofcfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . 3 ((𝐹𝑥)𝑅𝐶) ∈ V
2 eqid 2622 . . 3 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶))
31, 2fnmpti 6022 . 2 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴
4 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
6 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
7 eqidd 2623 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
84, 5, 6, 7ofcfval 30160 . . 3 (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
98fneq1d 5981 . 2 (𝜑 → ((𝐹𝑓/𝑐𝑅𝐶) Fn 𝐴 ↔ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴))
103, 9mpbiri 248 1 (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  cmpt 4729   Fn wfn 5883  cfv 5888  (class class class)co 6650  𝑓/𝑐cofc 30157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofc 30158
This theorem is referenced by:  probfinmeasb  30491  coinflipspace  30542
  Copyright terms: Public domain W3C validator