![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval | Structured version Visualization version GIF version |
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcfval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
ofcfval | ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofc 30158 | . . . 4 ⊢ ∘𝑓/𝑐𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∘𝑓/𝑐𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)))) |
3 | simprl 794 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑓 = 𝐹) | |
4 | 3 | dmeqd 5326 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹) |
5 | 3 | fveq1d 6193 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
6 | simprr 796 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑐 = 𝐶) | |
7 | 5, 6 | oveq12d 6668 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
8 | 4, 7 | mpteq12dv 4733 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
9 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
10 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | fnex 6481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
12 | 9, 10, 11 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
14 | elex 3212 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
16 | fndm 5990 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
17 | 9, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
18 | 17, 10 | eqeltrd 2701 | . . . 4 ⊢ (𝜑 → dom 𝐹 ∈ 𝑉) |
19 | mptexg 6484 | . . . 4 ⊢ (dom 𝐹 ∈ 𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
21 | 2, 8, 12, 15, 20 | ovmpt2d 6788 | . 2 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
22 | 17 | eleq2d 2687 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
23 | 22 | pm5.32i 669 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) |
24 | ofcfval.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
25 | 23, 24 | sylbi 207 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = 𝐵) |
26 | 25 | oveq1d 6665 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥)𝑅𝐶) = (𝐵𝑅𝐶)) |
27 | 17, 26 | mpteq12dva 4732 | . 2 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
28 | 21, 27 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ↦ cmpt 4729 dom cdm 5114 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ∘𝑓/𝑐cofc 30157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-ofc 30158 |
This theorem is referenced by: ofcval 30161 ofcfn 30162 ofcfeqd2 30163 ofcf 30165 ofcfval2 30166 ofcc 30168 ofcof 30169 |
Copyright terms: Public domain | W3C validator |