Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval4 Structured version   Visualization version   GIF version

Theorem ofcfval4 30167
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval4.1 (𝜑𝐹:𝐴𝐵)
ofcfval4.2 (𝜑𝐴𝑉)
ofcfval4.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfval4 (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ofcfval4.1 . . . 4 (𝜑𝐹:𝐴𝐵)
2 fdm 6051 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
31, 2syl 17 . . 3 (𝜑 → dom 𝐹 = 𝐴)
43mpteq1d 4738 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
5 ofcfval4.2 . . . 4 (𝜑𝐴𝑉)
6 fex 6490 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
71, 5, 6syl2anc 693 . . 3 (𝜑𝐹 ∈ V)
8 ofcfval4.3 . . 3 (𝜑𝐶𝑊)
9 ofcfval3 30164 . . 3 ((𝐹 ∈ V ∧ 𝐶𝑊) → (𝐹𝑓/𝑐𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
107, 8, 9syl2anc 693 . 2 (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
111ffvelrnda 6359 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
121feqmptd 6249 . . 3 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
13 eqidd 2623 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥𝐵 ↦ (𝑥𝑅𝐶)))
14 oveq1 6657 . . 3 (𝑥 = (𝐹𝑦) → (𝑥𝑅𝐶) = ((𝐹𝑦)𝑅𝐶))
1511, 12, 13, 14fmptco 6396 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
164, 10, 153eqtr4d 2666 1 (𝜑 → (𝐹𝑓/𝑐𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑓/𝑐cofc 30157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofc 30158
This theorem is referenced by:  rrvmulc  30515
  Copyright terms: Public domain W3C validator