![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eqel | Structured version Visualization version GIF version |
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.) |
Ref | Expression |
---|---|
on0eqel | ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | 0elon 5778 | . . . 4 ⊢ ∅ ∈ On | |
3 | onsseleq 5765 | . . . 4 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) | |
4 | 2, 3 | mpan 706 | . . 3 ⊢ (𝐴 ∈ On → (∅ ⊆ 𝐴 ↔ (∅ ∈ 𝐴 ∨ ∅ = 𝐴))) |
5 | 1, 4 | mpbii 223 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ∨ ∅ = 𝐴)) |
6 | eqcom 2629 | . . . 4 ⊢ (∅ = 𝐴 ↔ 𝐴 = ∅) | |
7 | 6 | orbi2i 541 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (∅ ∈ 𝐴 ∨ 𝐴 = ∅)) |
8 | orcom 402 | . . 3 ⊢ ((∅ ∈ 𝐴 ∨ 𝐴 = ∅) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) | |
9 | 7, 8 | bitri 264 | . 2 ⊢ ((∅ ∈ 𝐴 ∨ ∅ = 𝐴) ↔ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
10 | 5, 9 | sylib 208 | 1 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 Oncon0 5723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
This theorem is referenced by: snsn0non 5846 onxpdisj 5847 omabs 7727 cnfcom3lem 8600 |
Copyright terms: Public domain | W3C validator |