| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∅
∈ 𝑥 ↔ ∅
∈ ∅)) |
| 2 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (ω
↑𝑜 𝑥) = (ω ↑𝑜
∅)) |
| 3 | 2 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω
↑𝑜 ∅))) |
| 4 | 3, 2 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (ω ↑𝑜
𝑥) ↔ (𝐴 ·𝑜
(ω ↑𝑜 ∅)) = (ω
↑𝑜 ∅))) |
| 5 | 1, 4 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((∅
∈ 𝑥 → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)) ↔ (∅ ∈
∅ → (𝐴
·𝑜 (ω ↑𝑜 ∅)) =
(ω ↑𝑜 ∅)))) |
| 6 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦)) |
| 7 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (ω ↑𝑜
𝑥) = (ω
↑𝑜 𝑦)) |
| 8 | 7 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω
↑𝑜 𝑦))) |
| 9 | 8, 7 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥) ↔ (𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) |
| 10 | 6, 9 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)) ↔ (∅ ∈
𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)))) |
| 11 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦)) |
| 12 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → (ω ↑𝑜
𝑥) = (ω
↑𝑜 suc 𝑦)) |
| 13 | 12 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω
↑𝑜 suc 𝑦))) |
| 14 | 13, 12 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥) ↔ (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦))) |
| 15 | 11, 14 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)) ↔ (∅ ∈
suc 𝑦 → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 16 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵)) |
| 17 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (ω ↑𝑜
𝑥) = (ω
↑𝑜 𝐵)) |
| 18 | 17 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω
↑𝑜 𝐵))) |
| 19 | 18, 17 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥) ↔ (𝐴 ·𝑜
(ω ↑𝑜 𝐵)) = (ω ↑𝑜
𝐵))) |
| 20 | 16, 19 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)) ↔ (∅ ∈
𝐵 → (𝐴 ·𝑜 (ω
↑𝑜 𝐵)) = (ω ↑𝑜
𝐵)))) |
| 21 | | noel 3919 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ∅ |
| 22 | 21 | pm2.21i 116 |
. . . . . . . 8
⊢ (∅
∈ ∅ → (𝐴
·𝑜 (ω ↑𝑜 ∅)) =
(ω ↑𝑜 ∅)) |
| 23 | 22 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) → (∅ ∈ ∅ → (𝐴 ·𝑜 (ω
↑𝑜 ∅)) = (ω ↑𝑜
∅))) |
| 24 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ω ∈ On) |
| 25 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → 𝐴 ∈
ω) |
| 26 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ∅ ∈ 𝐴) |
| 27 | | omabslem 7726 |
. . . . . . . . . . . . . . . 16
⊢ ((ω
∈ On ∧ 𝐴 ∈
ω ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 ω) =
ω) |
| 28 | 24, 25, 26, 27 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝐴
·𝑜 ω) = ω) |
| 29 | 28 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) ∧ 𝑦 = ∅)
→ (𝐴
·𝑜 ω) = ω) |
| 30 | | suceq 5790 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
| 31 | | df-1o 7560 |
. . . . . . . . . . . . . . . . . 18
⊢
1𝑜 = suc ∅ |
| 32 | 30, 31 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ∅ → suc 𝑦 =
1𝑜) |
| 33 | 32 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (ω
↑𝑜 suc 𝑦) = (ω ↑𝑜
1𝑜)) |
| 34 | | oe1 7624 |
. . . . . . . . . . . . . . . . 17
⊢ (ω
∈ On → (ω ↑𝑜 1𝑜) =
ω) |
| 35 | 34 | ad2antrl 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (ω ↑𝑜 1𝑜) =
ω) |
| 36 | 33, 35 | sylan9eqr 2678 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) ∧ 𝑦 = ∅)
→ (ω ↑𝑜 suc 𝑦) = ω) |
| 37 | 36 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) ∧ 𝑦 = ∅)
→ (𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = (𝐴 ·𝑜
ω)) |
| 38 | 29, 37, 36 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) ∧ 𝑦 = ∅)
→ (𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω
↑𝑜 suc 𝑦)) |
| 39 | 38 | ex 450 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝑦 = ∅
→ (𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω
↑𝑜 suc 𝑦))) |
| 40 | 39 | a1dd 50 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝑦 = ∅
→ ((∅ ∈ 𝑦
→ (𝐴
·𝑜 (ω ↑𝑜 𝑦)) = (ω
↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω
↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 41 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) → ((𝐴 ·𝑜
(ω ↑𝑜 𝑦)) ·𝑜 ω) =
((ω ↑𝑜 𝑦) ·𝑜
ω)) |
| 42 | | oesuc 7607 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ω
∈ On ∧ 𝑦 ∈
On) → (ω ↑𝑜 suc 𝑦) = ((ω ↑𝑜
𝑦)
·𝑜 ω)) |
| 43 | 42 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (ω ↑𝑜 suc 𝑦) = ((ω ↑𝑜
𝑦)
·𝑜 ω)) |
| 44 | 43 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((ω
↑𝑜 𝑦) ·𝑜
ω))) |
| 45 | | nnon 7071 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 46 | 45 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → 𝐴 ∈
On) |
| 47 | | oecl 7617 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ω
∈ On ∧ 𝑦 ∈
On) → (ω ↑𝑜 𝑦) ∈ On) |
| 48 | 47 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (ω ↑𝑜 𝑦) ∈ On) |
| 49 | | omass 7660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ (ω
↑𝑜 𝑦) ∈ On ∧ ω ∈ On) →
((𝐴
·𝑜 (ω ↑𝑜 𝑦)) ·𝑜
ω) = (𝐴
·𝑜 ((ω ↑𝑜 𝑦) ·𝑜
ω))) |
| 50 | 46, 48, 24, 49 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((𝐴
·𝑜 (ω ↑𝑜 𝑦)) ·𝑜
ω) = (𝐴
·𝑜 ((ω ↑𝑜 𝑦) ·𝑜
ω))) |
| 51 | 44, 50 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) ·𝑜
ω)) |
| 52 | 51, 43 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((𝐴
·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω
↑𝑜 suc 𝑦) ↔ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) ·𝑜 ω) =
((ω ↑𝑜 𝑦) ·𝑜
ω))) |
| 53 | 41, 52 | syl5ibr 236 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((𝐴
·𝑜 (ω ↑𝑜 𝑦)) = (ω
↑𝑜 𝑦) → (𝐴 ·𝑜 (ω
↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦))) |
| 54 | 53 | imim2d 57 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 55 | 54 | com23 86 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 56 | | simprr 796 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → 𝑦 ∈
On) |
| 57 | | on0eqel 5845 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈
𝑦)) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → (𝑦 = ∅
∨ ∅ ∈ 𝑦)) |
| 59 | 40, 55, 58 | mpjaod 396 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦))) |
| 60 | 59 | a1dd 50 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝑦 ∈
On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
suc 𝑦 → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 61 | 60 | anassrs 680 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) ∧ 𝑦 ∈
On) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
suc 𝑦 → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦)))) |
| 62 | 61 | expcom 451 |
. . . . . . 7
⊢ (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
suc 𝑦 → (𝐴 ·𝑜
(ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc
𝑦))))) |
| 63 | 45 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → 𝐴 ∈ On) |
| 64 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ ω ∈ On) |
| 65 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ Lim 𝑥) |
| 66 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
| 67 | 65, 66 | jctil 560 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ (𝑥 ∈ V ∧
Lim 𝑥)) |
| 68 | | limelon 5788 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ 𝑥 ∈
On) |
| 70 | | oecl 7617 |
. . . . . . . . . . . . . . . 16
⊢ ((ω
∈ On ∧ 𝑥 ∈
On) → (ω ↑𝑜 𝑥) ∈ On) |
| 71 | 64, 69, 70 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ (ω ↑𝑜 𝑥) ∈ On) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑥) ∈ On) |
| 73 | | 1onn 7719 |
. . . . . . . . . . . . . . . . . 18
⊢
1𝑜 ∈ ω |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ 1𝑜 ∈ ω) |
| 75 | | ondif2 7582 |
. . . . . . . . . . . . . . . . 17
⊢ (ω
∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧
1𝑜 ∈ ω)) |
| 76 | 64, 74, 75 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ ω ∈ (On ∖ 2𝑜)) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → ω ∈
(On ∖ 2𝑜)) |
| 78 | 67 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥)) |
| 79 | | oelimcl 7680 |
. . . . . . . . . . . . . . 15
⊢ ((ω
∈ (On ∖ 2𝑜) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω
↑𝑜 𝑥)) |
| 80 | 77, 78, 79 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → Lim (ω
↑𝑜 𝑥)) |
| 81 | | omlim 7613 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ ((ω
↑𝑜 𝑥) ∈ On ∧ Lim (ω
↑𝑜 𝑥))) → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = ∪
𝑧 ∈ (ω
↑𝑜 𝑥)(𝐴 ·𝑜 𝑧)) |
| 82 | 63, 72, 80, 81 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = ∪
𝑧 ∈ (ω
↑𝑜 𝑥)(𝐴 ·𝑜 𝑧)) |
| 83 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → ω ∈
On) |
| 84 | | oelim2 7675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ω
∈ On ∧ (𝑥 ∈ V
∧ Lim 𝑥)) →
(ω ↑𝑜 𝑥) = ∪ 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω
↑𝑜 𝑦)) |
| 85 | 83, 78, 84 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑥) = ∪ 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω
↑𝑜 𝑦)) |
| 86 | 85 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝑧 ∈ (ω
↑𝑜 𝑥) ↔ 𝑧 ∈ ∪
𝑦 ∈ (𝑥 ∖
1𝑜)(ω ↑𝑜 𝑦))) |
| 87 | | eliun 4524 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ∪ 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω
↑𝑜 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω
↑𝑜 𝑦)) |
| 88 | 86, 87 | syl6bb 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝑧 ∈ (ω
↑𝑜 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω
↑𝑜 𝑦))) |
| 89 | 69 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → 𝑥 ∈ On) |
| 90 | | anass 681 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) ↔ (𝑦 ∈ 𝑥 ∧ (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)))) |
| 91 | | onelon 5748 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 92 | | on0eln0 5780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ On → (∅
∈ 𝑦 ↔ 𝑦 ≠ ∅)) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅)) |
| 94 | 93 | pm5.32da 673 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ On → ((𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅))) |
| 95 | | dif1o 7580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (𝑥 ∖ 1𝑜) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅)) |
| 96 | 94, 95 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ On → ((𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖
1𝑜))) |
| 97 | 96 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (((𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1𝑜) ∧ 𝑧 ∈ (ω
↑𝑜 𝑦)))) |
| 98 | 90, 97 | syl5bbr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → ((𝑦 ∈ 𝑥 ∧ (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1𝑜) ∧ 𝑧 ∈ (ω
↑𝑜 𝑦)))) |
| 99 | 98 | rexbidv2 3048 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ On → (∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω
↑𝑜 𝑦))) |
| 100 | 89, 99 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω
↑𝑜 𝑦))) |
| 101 | 88, 100 | bitr4d 271 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝑧 ∈ (ω
↑𝑜 𝑥) ↔ ∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)))) |
| 102 | | r19.29 3072 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) ∧ ∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → ∃𝑦 ∈ 𝑥 ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) ∧ (∅ ∈
𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)))) |
| 103 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((∅
∈ 𝑦 → (𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) |
| 104 | 103 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((∅ ∈ 𝑦
→ (𝐴
·𝑜 (ω ↑𝑜 𝑦)) = (ω
↑𝑜 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) |
| 105 | 104 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((∅ ∈ 𝑦
→ (𝐴
·𝑜 (ω ↑𝑜 𝑦)) = (ω
↑𝑜 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) → ((𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) |
| 106 | 105 | anasss 679 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((∅ ∈ 𝑦
→ (𝐴
·𝑜 (ω ↑𝑜 𝑦)) = (ω
↑𝑜 𝑦)) ∧ (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → ((𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) |
| 107 | 71 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑥) ∈ On) |
| 108 | | eloni 5733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ω
↑𝑜 𝑥) ∈ On → Ord (ω
↑𝑜 𝑥)) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → Ord (ω
↑𝑜 𝑥)) |
| 110 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝑧 ∈ (ω
↑𝑜 𝑦)) |
| 111 | 64 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → ω ∈
On) |
| 112 | 69 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝑥 ∈ On) |
| 113 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝑦 ∈ 𝑥) |
| 114 | 112, 113,
91 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝑦 ∈ On) |
| 115 | 111, 114,
47 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑦) ∈ On) |
| 116 | | onelon 5748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((ω ↑𝑜 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) → 𝑧 ∈ On) |
| 117 | 115, 110,
116 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝑧 ∈ On) |
| 118 | 45 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ 𝐴 ∈
On) |
| 119 | 118 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → 𝐴 ∈ On) |
| 120 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ ∅ ∈ 𝐴) |
| 121 | 120 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → ∅ ∈
𝐴) |
| 122 | | omord2 7647 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑧 ∈ On ∧ (ω
↑𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑𝑜
𝑦) ↔ (𝐴 ·𝑜
𝑧) ∈ (𝐴 ·𝑜
(ω ↑𝑜 𝑦)))) |
| 123 | 117, 115,
119, 121, 122 | syl31anc 1329 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝑧 ∈ (ω
↑𝑜 𝑦) ↔ (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 (ω
↑𝑜 𝑦)))) |
| 124 | 110, 123 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ∈ (𝐴 ·𝑜
(ω ↑𝑜 𝑦))) |
| 125 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
(ω ↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) |
| 126 | 124, 125 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ∈ (ω
↑𝑜 𝑦)) |
| 127 | 76 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → ω ∈
(On ∖ 2𝑜)) |
| 128 | | oeord 7668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈
(On ∖ 2𝑜)) → (𝑦 ∈ 𝑥 ↔ (ω ↑𝑜
𝑦) ∈ (ω
↑𝑜 𝑥))) |
| 129 | 114, 112,
127, 128 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝑦 ∈ 𝑥 ↔ (ω ↑𝑜
𝑦) ∈ (ω
↑𝑜 𝑥))) |
| 130 | 113, 129 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑦) ∈ (ω ↑𝑜
𝑥)) |
| 131 | | ontr1 5771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ω
↑𝑜 𝑥) ∈ On → (((𝐴 ·𝑜 𝑧) ∈ (ω
↑𝑜 𝑦) ∧ (ω ↑𝑜
𝑦) ∈ (ω
↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ∈ (ω
↑𝑜 𝑥))) |
| 132 | 107, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (((𝐴 ·𝑜
𝑧) ∈ (ω
↑𝑜 𝑦) ∧ (ω ↑𝑜
𝑦) ∈ (ω
↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ∈ (ω
↑𝑜 𝑥))) |
| 133 | 126, 130,
132 | mp2and 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ∈ (ω
↑𝑜 𝑥)) |
| 134 | | ordelss 5739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Ord
(ω ↑𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ∈ (ω
↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥)) |
| 135 | 109, 133,
134 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈
ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦 ∈ 𝑥) ∧ ((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥)) |
| 136 | 135 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ 𝑦 ∈ 𝑥) → (((𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦) ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 137 | 106, 136 | syl5 34 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ 𝑦 ∈ 𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) ∧ (∅ ∈
𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 138 | 137 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ (∃𝑦 ∈
𝑥 ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) ∧ (∅ ∈
𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 139 | 102, 138 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ ((∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) ∧ ∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 140 | 139 | expdimp 453 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (∃𝑦 ∈ 𝑥 (∅ ∈ 𝑦 ∧ 𝑧 ∈ (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 141 | 101, 140 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝑧 ∈ (ω
↑𝑜 𝑥) → (𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥))) |
| 142 | 141 | ralrimiv 2965 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → ∀𝑧 ∈ (ω
↑𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥)) |
| 143 | | iunss 4561 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 ∈ (ω ↑𝑜
𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥) ↔ ∀𝑧 ∈ (ω ↑𝑜
𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥)) |
| 144 | 142, 143 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → ∪ 𝑧 ∈ (ω ↑𝑜
𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω
↑𝑜 𝑥)) |
| 145 | 82, 144 | eqsstrd 3639 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) ⊆ (ω
↑𝑜 𝑥)) |
| 146 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → ∅ ∈
𝐴) |
| 147 | | omword2 7654 |
. . . . . . . . . . . . 13
⊢
((((ω ↑𝑜 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω
↑𝑜 𝑥) ⊆ (𝐴 ·𝑜 (ω
↑𝑜 𝑥))) |
| 148 | 72, 63, 146, 147 | syl21anc 1325 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (ω
↑𝑜 𝑥) ⊆ (𝐴 ·𝑜 (ω
↑𝑜 𝑥))) |
| 149 | 145, 148 | eqssd 3620 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
∧ ∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦))) → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)) |
| 150 | 149 | ex 450 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ Lim 𝑥))
→ (∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (ω ↑𝑜
𝑥))) |
| 151 | 150 | anassrs 680 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) ∧ Lim 𝑥)
→ (∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (𝐴 ·𝑜
(ω ↑𝑜 𝑥)) = (ω ↑𝑜
𝑥))) |
| 152 | 151 | a1dd 50 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) ∧ Lim 𝑥)
→ (∀𝑦 ∈
𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
𝑥 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥)))) |
| 153 | 152 | expcom 451 |
. . . . . . 7
⊢ (Lim
𝑥 → (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) → (∀𝑦 ∈ 𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω
↑𝑜 𝑦)) = (ω ↑𝑜
𝑦)) → (∅ ∈
𝑥 → (𝐴 ·𝑜 (ω
↑𝑜 𝑥)) = (ω ↑𝑜
𝑥))))) |
| 154 | 5, 10, 15, 20, 23, 62, 153 | tfinds3 7064 |
. . . . . 6
⊢ (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) → (∅ ∈ 𝐵 → (𝐴 ·𝑜 (ω
↑𝑜 𝐵)) = (ω ↑𝑜
𝐵)))) |
| 155 | 154 | com12 32 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ ω
∈ On) → (𝐵 ∈
On → (∅ ∈ 𝐵
→ (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (ω
↑𝑜 𝐵)))) |
| 156 | 155 | adantrr 753 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝐵 ∈
On)) → (𝐵 ∈ On
→ (∅ ∈ 𝐵
→ (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (ω
↑𝑜 𝐵)))) |
| 157 | 156 | imp32 449 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (ω
∈ On ∧ 𝐵 ∈
On)) ∧ (𝐵 ∈ On
∧ ∅ ∈ 𝐵))
→ (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (ω
↑𝑜 𝐵)) |
| 158 | 157 | an32s 846 |
. 2
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) ∧ (ω ∈
On ∧ 𝐵 ∈ On))
→ (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (ω
↑𝑜 𝐵)) |
| 159 | | nnm0 7685 |
. . . 4
⊢ (𝐴 ∈ ω → (𝐴 ·𝑜
∅) = ∅) |
| 160 | 159 | ad3antrrr 766 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) ∧ ¬ (ω
∈ On ∧ 𝐵 ∈
On)) → (𝐴
·𝑜 ∅) = ∅) |
| 161 | | fnoe 7590 |
. . . . . . 7
⊢
↑𝑜 Fn (On × On) |
| 162 | | fndm 5990 |
. . . . . . 7
⊢ (
↑𝑜 Fn (On × On) → dom
↑𝑜 = (On × On)) |
| 163 | 161, 162 | ax-mp 5 |
. . . . . 6
⊢ dom
↑𝑜 = (On × On) |
| 164 | 163 | ndmov 6818 |
. . . . 5
⊢ (¬
(ω ∈ On ∧ 𝐵
∈ On) → (ω ↑𝑜 𝐵) = ∅) |
| 165 | 164 | adantl 482 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) ∧ ¬ (ω
∈ On ∧ 𝐵 ∈
On)) → (ω ↑𝑜 𝐵) = ∅) |
| 166 | 165 | oveq2d 6666 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) ∧ ¬ (ω
∈ On ∧ 𝐵 ∈
On)) → (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (𝐴 ·𝑜
∅)) |
| 167 | 160, 166,
165 | 3eqtr4d 2666 |
. 2
⊢ ((((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) ∧ ¬ (ω
∈ On ∧ 𝐵 ∈
On)) → (𝐴
·𝑜 (ω ↑𝑜 𝐵)) = (ω
↑𝑜 𝐵)) |
| 168 | 158, 167 | pm2.61dan 832 |
1
⊢ (((𝐴 ∈ ω ∧ ∅
∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈
𝐵)) → (𝐴 ·𝑜
(ω ↑𝑜 𝐵)) = (ω ↑𝑜
𝐵)) |