MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Visualization version   GIF version

Theorem omabs 7727
Description: Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))

Proof of Theorem omabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2690 . . . . . . . 8 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2 oveq2 6658 . . . . . . . . . 10 (𝑥 = ∅ → (ω ↑𝑜 𝑥) = (ω ↑𝑜 ∅))
32oveq2d 6666 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω ↑𝑜 ∅)))
43, 2eqeq12d 2637 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥) ↔ (𝐴 ·𝑜 (ω ↑𝑜 ∅)) = (ω ↑𝑜 ∅)))
51, 4imbi12d 334 . . . . . . 7 (𝑥 = ∅ → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)) ↔ (∅ ∈ ∅ → (𝐴 ·𝑜 (ω ↑𝑜 ∅)) = (ω ↑𝑜 ∅))))
6 eleq2 2690 . . . . . . . 8 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
7 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑦 → (ω ↑𝑜 𝑥) = (ω ↑𝑜 𝑦))
87oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω ↑𝑜 𝑦)))
98, 7eqeq12d 2637 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥) ↔ (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)))
106, 9imbi12d 334 . . . . . . 7 (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)) ↔ (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))))
11 eleq2 2690 . . . . . . . 8 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
12 oveq2 6658 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (ω ↑𝑜 𝑥) = (ω ↑𝑜 suc 𝑦))
1312oveq2d 6666 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)))
1413, 12eqeq12d 2637 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥) ↔ (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦)))
1511, 14imbi12d 334 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)) ↔ (∅ ∈ suc 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
16 eleq2 2690 . . . . . . . 8 (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵))
17 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝐵 → (ω ↑𝑜 𝑥) = (ω ↑𝑜 𝐵))
1817oveq2d 6666 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (𝐴 ·𝑜 (ω ↑𝑜 𝐵)))
1918, 17eqeq12d 2637 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥) ↔ (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵)))
2016, 19imbi12d 334 . . . . . . 7 (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)) ↔ (∅ ∈ 𝐵 → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))))
21 noel 3919 . . . . . . . . 9 ¬ ∅ ∈ ∅
2221pm2.21i 116 . . . . . . . 8 (∅ ∈ ∅ → (𝐴 ·𝑜 (ω ↑𝑜 ∅)) = (ω ↑𝑜 ∅))
2322a1i 11 . . . . . . 7 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ ∅ → (𝐴 ·𝑜 (ω ↑𝑜 ∅)) = (ω ↑𝑜 ∅)))
24 simprl 794 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ω ∈ On)
25 simpll 790 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ ω)
26 simplr 792 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ∅ ∈ 𝐴)
27 omabslem 7726 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 ω) = ω)
2824, 25, 26, 27syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·𝑜 ω) = ω)
2928adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·𝑜 ω) = ω)
30 suceq 5790 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → suc 𝑦 = suc ∅)
31 df-1o 7560 . . . . . . . . . . . . . . . . . 18 1𝑜 = suc ∅
3230, 31syl6eqr 2674 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → suc 𝑦 = 1𝑜)
3332oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (ω ↑𝑜 suc 𝑦) = (ω ↑𝑜 1𝑜))
34 oe1 7624 . . . . . . . . . . . . . . . . 17 (ω ∈ On → (ω ↑𝑜 1𝑜) = ω)
3534ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑𝑜 1𝑜) = ω)
3633, 35sylan9eqr 2678 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (ω ↑𝑜 suc 𝑦) = ω)
3736oveq2d 6666 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (𝐴 ·𝑜 ω))
3829, 37, 363eqtr4d 2666 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))
3938ex 450 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦)))
4039a1dd 50 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
41 oveq1 6657 . . . . . . . . . . . . . 14 ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) ·𝑜 ω) = ((ω ↑𝑜 𝑦) ·𝑜 ω))
42 oesuc 7607 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑𝑜 suc 𝑦) = ((ω ↑𝑜 𝑦) ·𝑜 ω))
4342adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑𝑜 suc 𝑦) = ((ω ↑𝑜 𝑦) ·𝑜 ω))
4443oveq2d 6666 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((ω ↑𝑜 𝑦) ·𝑜 ω)))
45 nnon 7071 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ω → 𝐴 ∈ On)
4645ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ On)
47 oecl 7617 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑𝑜 𝑦) ∈ On)
4847adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑𝑜 𝑦) ∈ On)
49 omass 7660 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (ω ↑𝑜 𝑦) ∈ On ∧ ω ∈ On) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) ·𝑜 ω) = (𝐴 ·𝑜 ((ω ↑𝑜 𝑦) ·𝑜 ω)))
5046, 48, 24, 49syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) ·𝑜 ω) = (𝐴 ·𝑜 ((ω ↑𝑜 𝑦) ·𝑜 ω)))
5144, 50eqtr4d 2659 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) ·𝑜 ω))
5251, 43eqeq12d 2637 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦) ↔ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) ·𝑜 ω) = ((ω ↑𝑜 𝑦) ·𝑜 ω)))
5341, 52syl5ibr 236 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦)))
5453imim2d 57 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
5554com23 86 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
56 simprr 796 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝑦 ∈ On)
57 on0eqel 5845 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5856, 57syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5940, 55, 58mpjaod 396 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦)))
6059a1dd 50 . . . . . . . . 9 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
6160anassrs 680 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦))))
6261expcom 451 . . . . . . 7 (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 suc 𝑦)) = (ω ↑𝑜 suc 𝑦)))))
6345ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → 𝐴 ∈ On)
64 simprl 794 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ On)
65 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → Lim 𝑥)
66 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6765, 66jctil 560 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (𝑥 ∈ V ∧ Lim 𝑥))
68 limelon 5788 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝑥 ∈ On)
70 oecl 7617 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ↑𝑜 𝑥) ∈ On)
7164, 69, 70syl2anc 693 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (ω ↑𝑜 𝑥) ∈ On)
7271adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑥) ∈ On)
73 1onn 7719 . . . . . . . . . . . . . . . . . 18 1𝑜 ∈ ω
7473a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 1𝑜 ∈ ω)
75 ondif2 7582 . . . . . . . . . . . . . . . . 17 (ω ∈ (On ∖ 2𝑜) ↔ (ω ∈ On ∧ 1𝑜 ∈ ω))
7664, 74, 75sylanbrc 698 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ (On ∖ 2𝑜))
7776adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → ω ∈ (On ∖ 2𝑜))
7867adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥))
79 oelimcl 7680 . . . . . . . . . . . . . . 15 ((ω ∈ (On ∖ 2𝑜) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω ↑𝑜 𝑥))
8077, 78, 79syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → Lim (ω ↑𝑜 𝑥))
81 omlim 7613 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ ((ω ↑𝑜 𝑥) ∈ On ∧ Lim (ω ↑𝑜 𝑥))) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = 𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧))
8263, 72, 80, 81syl12anc 1324 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = 𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧))
83 simplrl 800 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → ω ∈ On)
84 oelim2 7675 . . . . . . . . . . . . . . . . . . . 20 ((ω ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (ω ↑𝑜 𝑥) = 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω ↑𝑜 𝑦))
8583, 78, 84syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑥) = 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω ↑𝑜 𝑦))
8685eleq2d 2687 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝑧 ∈ (ω ↑𝑜 𝑥) ↔ 𝑧 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω ↑𝑜 𝑦)))
87 eliun 4524 . . . . . . . . . . . . . . . . . 18 (𝑧 𝑦 ∈ (𝑥 ∖ 1𝑜)(ω ↑𝑜 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω ↑𝑜 𝑦))
8886, 87syl6bb 276 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝑧 ∈ (ω ↑𝑜 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω ↑𝑜 𝑦)))
8969adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → 𝑥 ∈ On)
90 anass 681 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)) ↔ (𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))))
91 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
92 on0eln0 5780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (∅ ∈ 𝑦𝑦 ≠ ∅))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → (∅ ∈ 𝑦𝑦 ≠ ∅))
9493pm5.32da 673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦𝑥𝑦 ≠ ∅)))
95 dif1o 7580 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥 ∖ 1𝑜) ↔ (𝑦𝑥𝑦 ≠ ∅))
9694, 95syl6bbr 278 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖ 1𝑜)))
9796anbi1d 741 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1𝑜) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))))
9890, 97syl5bbr 274 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → ((𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1𝑜) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))))
9998rexbidv2 3048 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω ↑𝑜 𝑦)))
10089, 99syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1𝑜)𝑧 ∈ (ω ↑𝑜 𝑦)))
10188, 100bitr4d 271 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝑧 ∈ (ω ↑𝑜 𝑥) ↔ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))))
102 r19.29 3072 . . . . . . . . . . . . . . . . . 18 ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) → ∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))))
103 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)))
104103imp 445 . . . . . . . . . . . . . . . . . . . . . 22 (((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))
105104anim1i 592 . . . . . . . . . . . . . . . . . . . . 21 ((((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)))
106105anasss 679 . . . . . . . . . . . . . . . . . . . 20 (((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) → ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)))
10771ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑥) ∈ On)
108 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . 23 ((ω ↑𝑜 𝑥) ∈ On → Ord (ω ↑𝑜 𝑥))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → Ord (ω ↑𝑜 𝑥))
110 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝑧 ∈ (ω ↑𝑜 𝑦))
11164ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → ω ∈ On)
11269ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝑥 ∈ On)
113 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝑦𝑥)
114112, 113, 91syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝑦 ∈ On)
115111, 114, 47syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑦) ∈ On)
116 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ω ↑𝑜 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)) → 𝑧 ∈ On)
117115, 110, 116syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝑧 ∈ On)
11845ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝐴 ∈ On)
119118ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → 𝐴 ∈ On)
120 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ∅ ∈ 𝐴)
121120ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → ∅ ∈ 𝐴)
122 omord2 7647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ On ∧ (ω ↑𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑𝑜 𝑦) ↔ (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 (ω ↑𝑜 𝑦))))
123117, 115, 119, 121, 122syl31anc 1329 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝑧 ∈ (ω ↑𝑜 𝑦) ↔ (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 (ω ↑𝑜 𝑦))))
124110, 123mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 (ω ↑𝑜 𝑦)))
125 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))
126124, 125eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑦))
12776ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → ω ∈ (On ∖ 2𝑜))
128 oeord 7668 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ (On ∖ 2𝑜)) → (𝑦𝑥 ↔ (ω ↑𝑜 𝑦) ∈ (ω ↑𝑜 𝑥)))
129114, 112, 127, 128syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝑦𝑥 ↔ (ω ↑𝑜 𝑦) ∈ (ω ↑𝑜 𝑥)))
130113, 129mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑦) ∈ (ω ↑𝑜 𝑥))
131 ontr1 5771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ↑𝑜 𝑥) ∈ On → (((𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑦) ∧ (ω ↑𝑜 𝑦) ∈ (ω ↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑥)))
132107, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (((𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑦) ∧ (ω ↑𝑜 𝑦) ∈ (ω ↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑥)))
133126, 130, 132mp2and 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑥))
134 ordelss 5739 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord (ω ↑𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ∈ (ω ↑𝑜 𝑥)) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥))
135109, 133, 134syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥))
136135ex 450 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦) ∧ 𝑧 ∈ (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
137106, 136syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
138137rexlimdva 3031 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
139102, 138syl5 34 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
140139expdimp 453 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
141101, 140sylbid 230 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝑧 ∈ (ω ↑𝑜 𝑥) → (𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥)))
142141ralrimiv 2965 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → ∀𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥))
143 iunss 4561 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥) ↔ ∀𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥))
144142, 143sylibr 224 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → 𝑧 ∈ (ω ↑𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ (ω ↑𝑜 𝑥))
14582, 144eqsstrd 3639 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) ⊆ (ω ↑𝑜 𝑥))
146 simpllr 799 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → ∅ ∈ 𝐴)
147 omword2 7654 . . . . . . . . . . . . 13 ((((ω ↑𝑜 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω ↑𝑜 𝑥) ⊆ (𝐴 ·𝑜 (ω ↑𝑜 𝑥)))
14872, 63, 146, 147syl21anc 1325 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (ω ↑𝑜 𝑥) ⊆ (𝐴 ·𝑜 (ω ↑𝑜 𝑥)))
149145, 148eqssd 3620 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦))) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥))
150149ex 450 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)))
151150anassrs 680 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)))
152151a1dd 50 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥))))
153152expcom 451 . . . . . . 7 (Lim 𝑥 → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·𝑜 (ω ↑𝑜 𝑦)) = (ω ↑𝑜 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·𝑜 (ω ↑𝑜 𝑥)) = (ω ↑𝑜 𝑥)))))
1545, 10, 15, 20, 23, 62, 153tfinds3 7064 . . . . . 6 (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ 𝐵 → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))))
155154com12 32 . . . . 5 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))))
156155adantrr 753 . . . 4 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))))
157156imp32 449 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))
158157an32s 846 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))
159 nnm0 7685 . . . 4 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
160159ad3antrrr 766 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 ∅) = ∅)
161 fnoe 7590 . . . . . . 7 𝑜 Fn (On × On)
162 fndm 5990 . . . . . . 7 ( ↑𝑜 Fn (On × On) → dom ↑𝑜 = (On × On))
163161, 162ax-mp 5 . . . . . 6 dom ↑𝑜 = (On × On)
164163ndmov 6818 . . . . 5 (¬ (ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑𝑜 𝐵) = ∅)
165164adantl 482 . . . 4 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (ω ↑𝑜 𝐵) = ∅)
166165oveq2d 6666 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (𝐴 ·𝑜 ∅))
167160, 166, 1653eqtr4d 2666 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))
168158, 167pm2.61dan 832 1 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (ω ↑𝑜 𝐵)) = (ω ↑𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  c0 3915   ciun 4520   × cxp 5112  dom cdm 5114  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725   Fn wfn 5883  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554   ·𝑜 comu 7558  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  cnfcom3  8601
  Copyright terms: Public domain W3C validator