MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on0eqel Structured version   Visualization version   Unicode version

Theorem on0eqel 5845
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004.)
Assertion
Ref Expression
on0eqel  |-  ( A  e.  On  ->  ( A  =  (/)  \/  (/)  e.  A
) )

Proof of Theorem on0eqel
StepHypRef Expression
1 0ss 3972 . . 3  |-  (/)  C_  A
2 0elon 5778 . . . 4  |-  (/)  e.  On
3 onsseleq 5765 . . . 4  |-  ( (
(/)  e.  On  /\  A  e.  On )  ->  ( (/)  C_  A  <->  ( (/)  e.  A  \/  (/)  =  A ) ) )
42, 3mpan 706 . . 3  |-  ( A  e.  On  ->  ( (/)  C_  A  <->  ( (/)  e.  A  \/  (/)  =  A ) ) )
51, 4mpbii 223 . 2  |-  ( A  e.  On  ->  ( (/) 
e.  A  \/  (/)  =  A ) )
6 eqcom 2629 . . . 4  |-  ( (/)  =  A  <->  A  =  (/) )
76orbi2i 541 . . 3  |-  ( (
(/)  e.  A  \/  (/)  =  A )  <->  ( (/)  e.  A  \/  A  =  (/) ) )
8 orcom 402 . . 3  |-  ( (
(/)  e.  A  \/  A  =  (/) )  <->  ( A  =  (/)  \/  (/)  e.  A
) )
97, 8bitri 264 . 2  |-  ( (
(/)  e.  A  \/  (/)  =  A )  <->  ( A  =  (/)  \/  (/)  e.  A
) )
105, 9sylib 208 1  |-  ( A  e.  On  ->  ( A  =  (/)  \/  (/)  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  snsn0non  5846  onxpdisj  5847  omabs  7727  cnfcom3lem  8600
  Copyright terms: Public domain W3C validator