MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmini Structured version   Visualization version   Unicode version

Theorem oneqmini 5776
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmini  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  A  =  |^| B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oneqmini
StepHypRef Expression
1 ssint 4493 . . . . . 6  |-  ( A 
C_  |^| B  <->  A. x  e.  B  A  C_  x
)
2 ssel 3597 . . . . . . . . . . . 12  |-  ( B 
C_  On  ->  ( A  e.  B  ->  A  e.  On ) )
3 ssel 3597 . . . . . . . . . . . 12  |-  ( B 
C_  On  ->  ( x  e.  B  ->  x  e.  On ) )
42, 3anim12d 586 . . . . . . . . . . 11  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  x  e.  B )  ->  ( A  e.  On  /\  x  e.  On ) ) )
5 ontri1 5757 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  C_  x  <->  -.  x  e.  A ) )
64, 5syl6 35 . . . . . . . . . 10  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  x  e.  B )  ->  ( A  C_  x  <->  -.  x  e.  A ) ) )
76expdimp 453 . . . . . . . . 9  |-  ( ( B  C_  On  /\  A  e.  B )  ->  (
x  e.  B  -> 
( A  C_  x  <->  -.  x  e.  A ) ) )
87pm5.74d 262 . . . . . . . 8  |-  ( ( B  C_  On  /\  A  e.  B )  ->  (
( x  e.  B  ->  A  C_  x )  <->  ( x  e.  B  ->  -.  x  e.  A
) ) )
9 con2b 349 . . . . . . . 8  |-  ( ( x  e.  B  ->  -.  x  e.  A
)  <->  ( x  e.  A  ->  -.  x  e.  B ) )
108, 9syl6bb 276 . . . . . . 7  |-  ( ( B  C_  On  /\  A  e.  B )  ->  (
( x  e.  B  ->  A  C_  x )  <->  ( x  e.  A  ->  -.  x  e.  B
) ) )
1110ralbidv2 2984 . . . . . 6  |-  ( ( B  C_  On  /\  A  e.  B )  ->  ( A. x  e.  B  A  C_  x  <->  A. x  e.  A  -.  x  e.  B ) )
121, 11syl5bb 272 . . . . 5  |-  ( ( B  C_  On  /\  A  e.  B )  ->  ( A  C_  |^| B  <->  A. x  e.  A  -.  x  e.  B ) )
1312biimprd 238 . . . 4  |-  ( ( B  C_  On  /\  A  e.  B )  ->  ( A. x  e.  A  -.  x  e.  B  ->  A  C_  |^| B ) )
1413expimpd 629 . . 3  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  A  C_  |^| B ) )
15 intss1 4492 . . . . 5  |-  ( A  e.  B  ->  |^| B  C_  A )
1615a1i 11 . . . 4  |-  ( B 
C_  On  ->  ( A  e.  B  ->  |^| B  C_  A ) )
1716adantrd 484 . . 3  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  |^| B  C_  A
) )
1814, 17jcad 555 . 2  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  ( A  C_  |^| B  /\  |^| B  C_  A
) ) )
19 eqss 3618 . 2  |-  ( A  =  |^| B  <->  ( A  C_ 
|^| B  /\  |^| B  C_  A ) )
2018, 19syl6ibr 242 1  |-  ( B 
C_  On  ->  ( ( A  e.  B  /\  A. x  e.  A  -.  x  e.  B )  ->  A  =  |^| B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   |^|cint 4475   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  oneqmin  7005  alephval3  8933  cfsuc  9079  alephval2  9394
  Copyright terms: Public domain W3C validator