| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oneqmini | Structured version Visualization version Unicode version | ||
| Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.) |
| Ref | Expression |
|---|---|
| oneqmini |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4493 |
. . . . . 6
| |
| 2 | ssel 3597 |
. . . . . . . . . . . 12
| |
| 3 | ssel 3597 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | anim12d 586 |
. . . . . . . . . . 11
|
| 5 | ontri1 5757 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl6 35 |
. . . . . . . . . 10
|
| 7 | 6 | expdimp 453 |
. . . . . . . . 9
|
| 8 | 7 | pm5.74d 262 |
. . . . . . . 8
|
| 9 | con2b 349 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl6bb 276 |
. . . . . . 7
|
| 11 | 10 | ralbidv2 2984 |
. . . . . 6
|
| 12 | 1, 11 | syl5bb 272 |
. . . . 5
|
| 13 | 12 | biimprd 238 |
. . . 4
|
| 14 | 13 | expimpd 629 |
. . 3
|
| 15 | intss1 4492 |
. . . . 5
| |
| 16 | 15 | a1i 11 |
. . . 4
|
| 17 | 16 | adantrd 484 |
. . 3
|
| 18 | 14, 17 | jcad 555 |
. 2
|
| 19 | eqss 3618 |
. 2
| |
| 20 | 18, 19 | syl6ibr 242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
| This theorem is referenced by: oneqmin 7005 alephval3 8933 cfsuc 9079 alephval2 9394 |
| Copyright terms: Public domain | W3C validator |