Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 33231
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 7720 . . . . . . . 8 2𝑜 ∈ ω
2 nnon 7071 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 7568 . . . . . . . . . . . . . 14 2𝑜 ∈ On
4 oawordeu 7635 . . . . . . . . . . . . . 14 (((2𝑜 ∈ On ∧ 𝑁 ∈ On) ∧ 2𝑜𝑁) → ∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)
53, 4mpanl1 716 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2𝑜𝑁) → ∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)
6 riotasbc 6626 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁[(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜](2𝑜 +𝑜 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2𝑜𝑁) → [(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜](2𝑜 +𝑜 𝑜) = 𝑁)
8 riotaex 6615 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ V
9 sbceq1g 3988 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜](2𝑜 +𝑜 𝑜) = 𝑁(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜](2𝑜 +𝑜 𝑜) = 𝑁(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = 𝑁)
11 csbov2g 6691 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜𝑜)
13 csbvarg 4003 . . . . . . . . . . . . . . . . 17 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))
148, 13ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)
1514oveq2i 6661 . . . . . . . . . . . . . . 15 (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜𝑜) = (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))
1612, 15eqtri 2644 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))
1716eqeq1i 2627 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜(2𝑜 +𝑜 𝑜) = 𝑁 ↔ (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = 𝑁)
1810, 17bitri 264 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) / 𝑜](2𝑜 +𝑜 𝑜) = 𝑁 ↔ (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = 𝑁)
197, 18sylib 208 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2𝑜𝑁) → (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = 𝑁)
202, 19sylan 488 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = 𝑁)
21 simpl 473 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 ∈ ω)
2220, 21eqeltrd 2701 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω)
23 riotacl 6625 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁 → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On)
24 riotaund 6647 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁 → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) = ∅)
25 0elon 5778 . . . . . . . . . . . 12 ∅ ∈ On
2624, 25syl6eqel 2709 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁 → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On)
2723, 26pm2.61i 176 . . . . . . . . . 10 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On
28 nnarcl 7696 . . . . . . . . . . . 12 ((2𝑜 ∈ On ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On) → ((2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω ↔ (2𝑜 ∈ ω ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω)))
293, 28mpan 706 . . . . . . . . . . 11 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On → ((2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω ↔ (2𝑜 ∈ ω ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω)))
301biantrur 527 . . . . . . . . . . 11 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω ↔ (2𝑜 ∈ ω ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω))
3129, 30syl6bbr 278 . . . . . . . . . 10 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ On → ((2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω))
3227, 31ax-mp 5 . . . . . . . . 9 ((2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω)
3322, 32sylib 208 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω)
34 nnacom 7697 . . . . . . . 8 ((2𝑜 ∈ ω ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω) → (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 2𝑜))
351, 33, 34sylancr 695 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) = ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 2𝑜))
36 df-2o 7561 . . . . . . . . 9 2𝑜 = suc 1𝑜
3736oveq2i 6661 . . . . . . . 8 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 2𝑜) = ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 suc 1𝑜)
38 1onn 7719 . . . . . . . . 9 1𝑜 ∈ ω
39 nnasuc 7686 . . . . . . . . 9 (((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω ∧ 1𝑜 ∈ ω) → ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 suc 1𝑜) = suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜))
4033, 38, 39sylancl 694 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 suc 1𝑜) = suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜))
4137, 40syl5eq 2668 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 2𝑜) = suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜))
4235, 20, 413eqtr3d 2664 . . . . . 6 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 = suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜))
432adantr 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 ∈ On)
44 sucidg 5803 . . . . . . . . . . . 12 (1𝑜 ∈ ω → 1𝑜 ∈ suc 1𝑜)
4538, 44ax-mp 5 . . . . . . . . . . 11 1𝑜 ∈ suc 1𝑜
4645, 36eleqtrri 2700 . . . . . . . . . 10 1𝑜 ∈ 2𝑜
47 ssel 3597 . . . . . . . . . 10 (2𝑜𝑁 → (1𝑜 ∈ 2𝑜 → 1𝑜𝑁))
4846, 47mpi 20 . . . . . . . . 9 (2𝑜𝑁 → 1𝑜𝑁)
49 ne0i 3921 . . . . . . . . 9 (1𝑜𝑁𝑁 ≠ ∅)
5048, 49syl 17 . . . . . . . 8 (2𝑜𝑁𝑁 ≠ ∅)
5150adantl 482 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 ≠ ∅)
52 nnlim 7078 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5352adantr 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → ¬ Lim 𝑁)
54 onsucuni3 33215 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5543, 51, 53, 54syl3anc 1326 . . . . . 6 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 = suc 𝑁)
56 nnacom 7697 . . . . . . . 8 (((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω ∧ 1𝑜 ∈ ω) → ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜) = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
5733, 38, 56sylancl 694 . . . . . . 7 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜) = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
58 suceq 5790 . . . . . . 7 (((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜) = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜) = suc (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
5957, 58syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → suc ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) +𝑜 1𝑜) = suc (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
6042, 55, 593eqtr3d 2664 . . . . 5 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → suc 𝑁 = suc (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
61 ordom 7074 . . . . . . . . 9 Ord ω
62 ordelss 5739 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6361, 62mpan 706 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
64 nnfi 8153 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
65 nnunifi 8211 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6663, 64, 65syl2anc 693 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6766adantr 481 . . . . . 6 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 ∈ ω)
68 nnacl 7691 . . . . . . 7 ((1𝑜 ∈ ω ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω) → (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω)
6938, 33, 68sylancr 695 . . . . . 6 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω)
70 peano4 7088 . . . . . 6 (( 𝑁 ∈ ω ∧ (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ↔ 𝑁 = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))))
7167, 69, 70syl2anc 693 . . . . 5 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (suc 𝑁 = suc (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)) ↔ 𝑁 = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))))
7260, 71mpbid 222 . . . 4 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → 𝑁 = (1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))
7372fveq2d 6195 . . 3 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))))
7473adantr 481 . 2 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))))
7533adantr 481 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω)
76 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
7776finxpreclem3 33230 . . . . . 6 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
78 df-1o 7560 . . . . . . . 8 1𝑜 = suc ∅
7978fveq2i 6194 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
80 rdgsuc 7520 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
8125, 80ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
82 opex 4932 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
8382rdg0 7517 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8483fveq2i 6194 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8579, 81, 843eqtri 2648 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜) = (𝐹‘⟨𝑁, 𝑦⟩)
8677, 85syl6reqr 2675 . . . . 5 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜) = ⟨ 𝑁, (1st𝑦)⟩)
8786fveq2d 6195 . . . 4 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
88 2on0 7569 . . . . . 6 2𝑜 ≠ ∅
89 nnlim 7078 . . . . . . 7 (2𝑜 ∈ ω → ¬ Lim 2𝑜)
901, 89ax-mp 5 . . . . . 6 ¬ Lim 2𝑜
91 rdgsucuni 33217 . . . . . 6 ((2𝑜 ∈ On ∧ 2𝑜 ≠ ∅ ∧ ¬ Lim 2𝑜) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2𝑜)))
923, 88, 90, 91mp3an 1424 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2𝑜))
93 1oequni2o 33216 . . . . . . 7 1𝑜 = 2𝑜
9493fveq2i 6194 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2𝑜)
9594fveq2i 6194 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2𝑜))
9692, 95eqtr4i 2647 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1𝑜))
9778fveq2i 6194 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1𝑜) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
98 rdgsuc 7520 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9925, 98ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
100 opex 4932 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
101100rdg0 7517 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
102101fveq2i 6194 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10397, 99, 1023eqtri 2648 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1𝑜) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10487, 96, 1033eqtr4g 2681 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1𝑜))
105 1on 7567 . . . 4 1𝑜 ∈ On
106 rdgeqoa 33218 . . . 4 ((2𝑜 ∈ On ∧ 1𝑜 ∈ On ∧ (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1𝑜) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))))
1073, 105, 106mp3an12 1414 . . 3 ((𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2𝑜) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1𝑜) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁)))))
10875, 104, 107sylc 65 . 2 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))))
10920fveq2d 6195 . . 3 ((𝑁 ∈ ω ∧ 2𝑜𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
110109adantr 481 . 2 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2𝑜 +𝑜 (𝑜 ∈ On (2𝑜 +𝑜 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
11174, 108, 1103eqtr2rd 2663 1 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  ∃!wreu 2914  Vcvv 3200  [wsbc 3435  csb 3533  wss 3574  c0 3915  ifcif 4086  cop 4183   cuni 4436   × cxp 5112  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  ωcom 7065  1st c1st 7166  reccrdg 7505  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  finxpsuclem  33234
  Copyright terms: Public domain W3C validator