MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn1stprc Structured version   Visualization version   Unicode version

Theorem opabn1stprc 7228
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wwf. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
opabn1stprc  |-  ( E. y ph  ->  { <. x ,  y >.  |  ph }  e/  _V )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem opabn1stprc
StepHypRef Expression
1 vex 3203 . . . . . . . 8  |-  x  e. 
_V
21biantrur 527 . . . . . . 7  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
32opabbii 4717 . . . . . 6  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ( x  e.  _V  /\  ph ) }
43dmeqi 5325 . . . . 5  |-  dom  { <. x ,  y >.  |  ph }  =  dom  {
<. x ,  y >.  |  ( x  e. 
_V  /\  ph ) }
5 id 22 . . . . . . 7  |-  ( E. y ph  ->  E. y ph )
65ralrimivw 2967 . . . . . 6  |-  ( E. y ph  ->  A. x  e.  _V  E. y ph )
7 dmopab3 5337 . . . . . 6  |-  ( A. x  e.  _V  E. y ph 
<->  dom  { <. x ,  y >.  |  ( x  e.  _V  /\  ph ) }  =  _V )
86, 7sylib 208 . . . . 5  |-  ( E. y ph  ->  dom  {
<. x ,  y >.  |  ( x  e. 
_V  /\  ph ) }  =  _V )
94, 8syl5eq 2668 . . . 4  |-  ( E. y ph  ->  dom  {
<. x ,  y >.  |  ph }  =  _V )
10 vprc 4796 . . . . 5  |-  -.  _V  e.  _V
1110a1i 11 . . . 4  |-  ( E. y ph  ->  -.  _V  e.  _V )
129, 11eqneltrd 2720 . . 3  |-  ( E. y ph  ->  -.  dom  { <. x ,  y
>.  |  ph }  e.  _V )
13 dmexg 7097 . . 3  |-  ( {
<. x ,  y >.  |  ph }  e.  _V  ->  dom  { <. x ,  y >.  |  ph }  e.  _V )
1412, 13nsyl 135 . 2  |-  ( E. y ph  ->  -.  {
<. x ,  y >.  |  ph }  e.  _V )
15 df-nel 2898 . 2  |-  ( {
<. x ,  y >.  |  ph }  e/  _V  <->  -. 
{ <. x ,  y
>.  |  ph }  e.  _V )
1614, 15sylibr 224 1  |-  ( E. y ph  ->  { <. x ,  y >.  |  ph }  e/  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    e/ wnel 2897   A.wral 2912   _Vcvv 3200   {copab 4712   dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  griedg0prc  26156
  Copyright terms: Public domain W3C validator