Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeliun2xp Structured version   Visualization version   GIF version

Theorem opeliun2xp 42111
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5170. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
opeliun2xp (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))

Proof of Theorem opeliun2xp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4522 . . 3 𝑦𝐵 (𝐴 × {𝑦}) = {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})}
21eleq2i 2693 . 2 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})})
3 opex 4932 . . 3 𝐶, 𝑦⟩ ∈ V
4 df-rex 2918 . . . . 5 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})))
5 nfv 1843 . . . . . 6 𝑧(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦}))
6 nfs1v 2437 . . . . . . 7 𝑦[𝑧 / 𝑦]𝑦𝐵
7 nfcsb1v 3549 . . . . . . . . 9 𝑦𝑧 / 𝑦𝐴
8 nfcv 2764 . . . . . . . . 9 𝑦{𝑧}
97, 8nfxp 5142 . . . . . . . 8 𝑦(𝑧 / 𝑦𝐴 × {𝑧})
109nfcri 2758 . . . . . . 7 𝑦 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})
116, 10nfan 1828 . . . . . 6 𝑦([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))
12 sbequ12 2111 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐵 ↔ [𝑧 / 𝑦]𝑦𝐵))
13 csbeq1a 3542 . . . . . . . . 9 (𝑦 = 𝑧𝐴 = 𝑧 / 𝑦𝐴)
14 sneq 4187 . . . . . . . . 9 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1513, 14xpeq12d 5140 . . . . . . . 8 (𝑦 = 𝑧 → (𝐴 × {𝑦}) = (𝑧 / 𝑦𝐴 × {𝑧}))
1615eleq2d 2687 . . . . . . 7 (𝑦 = 𝑧 → (𝑥 ∈ (𝐴 × {𝑦}) ↔ 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
1712, 16anbi12d 747 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
185, 11, 17cbvex 2272 . . . . 5 (∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
194, 18bitri 264 . . . 4 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
20 eleq1 2689 . . . . . 6 (𝑥 = ⟨𝐶, 𝑦⟩ → (𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
2120anbi2d 740 . . . . 5 (𝑥 = ⟨𝐶, 𝑦⟩ → (([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2221exbidv 1850 . . . 4 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2319, 22syl5bb 272 . . 3 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
243, 23elab 3350 . 2 (⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})} ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
25 opelxp 5146 . . . . . 6 (⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧}))
2625anbi2i 730 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})))
27 an13 840 . . . . . 6 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)))
28 ancom 466 . . . . . . 7 ((𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵) ↔ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴))
2928anbi2i 730 . . . . . 6 ((𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3027, 29bitri 264 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
31 velsn 4193 . . . . . . 7 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
32 equcom 1945 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
3331, 32bitri 264 . . . . . 6 (𝑦 ∈ {𝑧} ↔ 𝑧 = 𝑦)
3433anbi1i 731 . . . . 5 ((𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3526, 30, 343bitri 286 . . . 4 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3635exbii 1774 . . 3 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
37 vex 3203 . . . 4 𝑦 ∈ V
38 sbequ12r 2112 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝑦𝐵𝑦𝐵))
3913equcoms 1947 . . . . . . 7 (𝑧 = 𝑦𝐴 = 𝑧 / 𝑦𝐴)
4039eqcomd 2628 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑦𝐴 = 𝐴)
4140eleq2d 2687 . . . . 5 (𝑧 = 𝑦 → (𝐶𝑧 / 𝑦𝐴𝐶𝐴))
4238, 41anbi12d 747 . . . 4 (𝑧 = 𝑦 → (([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴) ↔ (𝑦𝐵𝐶𝐴)))
4337, 42ceqsexv 3242 . . 3 (∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑦𝐵𝐶𝐴))
4436, 43bitri 264 . 2 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑦𝐵𝐶𝐴))
452, 24, 443bitri 286 1 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  [wsb 1880  wcel 1990  {cab 2608  wrex 2913  csb 3533  {csn 4177  cop 4183   ciun 4520   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-xp 5120
This theorem is referenced by:  eliunxp2  42112
  Copyright terms: Public domain W3C validator