| Step | Hyp | Ref
| Expression |
| 1 | | df-rel 5121 |
. 2
⊢ (Rel
〈𝐴, 𝐵〉 ↔ 〈𝐴, 𝐵〉 ⊆ (V ×
V)) |
| 2 | | dfss2 3591 |
. . . . 5
⊢
(〈𝐴, 𝐵〉 ⊆ (V × V)
↔ ∀𝑧(𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V))) |
| 3 | | relop.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
| 4 | | relop.2 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
| 5 | 3, 4 | elop 4935 |
. . . . . . . . 9
⊢ (𝑧 ∈ 〈𝐴, 𝐵〉 ↔ (𝑧 = {𝐴} ∨ 𝑧 = {𝐴, 𝐵})) |
| 6 | | elvv 5177 |
. . . . . . . . 9
⊢ (𝑧 ∈ (V × V) ↔
∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) |
| 7 | 5, 6 | imbi12i 340 |
. . . . . . . 8
⊢ ((𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V)) ↔ ((𝑧 = {𝐴} ∨ 𝑧 = {𝐴, 𝐵}) → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) |
| 8 | | jaob 822 |
. . . . . . . 8
⊢ (((𝑧 = {𝐴} ∨ 𝑧 = {𝐴, 𝐵}) → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ↔ ((𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ (𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 9 | 7, 8 | bitri 264 |
. . . . . . 7
⊢ ((𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V)) ↔ ((𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ (𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 10 | 9 | albii 1747 |
. . . . . 6
⊢
(∀𝑧(𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V)) ↔ ∀𝑧((𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ (𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 11 | | 19.26 1798 |
. . . . . 6
⊢
(∀𝑧((𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ (𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) ↔ (∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ ∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 12 | 10, 11 | bitri 264 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V)) ↔ (∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ ∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 13 | 2, 12 | bitri 264 |
. . . 4
⊢
(〈𝐴, 𝐵〉 ⊆ (V × V)
↔ (∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ ∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉))) |
| 14 | | snex 4908 |
. . . . . . 7
⊢ {𝐴} ∈ V |
| 15 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑧 = {𝐴} → (𝑧 = {𝐴} ↔ {𝐴} = {𝐴})) |
| 16 | | eqeq1 2626 |
. . . . . . . . . 10
⊢ (𝑧 = {𝐴} → (𝑧 = 〈𝑥, 𝑦〉 ↔ {𝐴} = 〈𝑥, 𝑦〉)) |
| 17 | | eqcom 2629 |
. . . . . . . . . . 11
⊢ ({𝐴} = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 𝑦〉 = {𝐴}) |
| 18 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 19 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 20 | 18, 19, 3 | opeqsn 4967 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 = {𝐴} ↔ (𝑥 = 𝑦 ∧ 𝐴 = {𝑥})) |
| 21 | 17, 20 | bitri 264 |
. . . . . . . . . 10
⊢ ({𝐴} = 〈𝑥, 𝑦〉 ↔ (𝑥 = 𝑦 ∧ 𝐴 = {𝑥})) |
| 22 | 16, 21 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝑧 = {𝐴} → (𝑧 = 〈𝑥, 𝑦〉 ↔ (𝑥 = 𝑦 ∧ 𝐴 = {𝑥}))) |
| 23 | 22 | 2exbidv 1852 |
. . . . . . . 8
⊢ (𝑧 = {𝐴} → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}))) |
| 24 | 15, 23 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = {𝐴} → ((𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ↔ ({𝐴} = {𝐴} → ∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥})))) |
| 25 | 14, 24 | spcv 3299 |
. . . . . 6
⊢
(∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ({𝐴} = {𝐴} → ∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}))) |
| 26 | | sneq 4187 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → {𝑤} = {𝑥}) |
| 27 | 26 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝐴 = {𝑤} ↔ 𝐴 = {𝑥})) |
| 28 | 27 | cbvexv 2275 |
. . . . . . 7
⊢
(∃𝑤 𝐴 = {𝑤} ↔ ∃𝑥 𝐴 = {𝑥}) |
| 29 | | ax6evr 1942 |
. . . . . . . . 9
⊢
∃𝑦 𝑥 = 𝑦 |
| 30 | | 19.41v 1914 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}) ↔ (∃𝑦 𝑥 = 𝑦 ∧ 𝐴 = {𝑥})) |
| 31 | 29, 30 | mpbiran 953 |
. . . . . . . 8
⊢
(∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}) ↔ 𝐴 = {𝑥}) |
| 32 | 31 | exbii 1774 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}) ↔ ∃𝑥 𝐴 = {𝑥}) |
| 33 | | eqid 2622 |
. . . . . . . 8
⊢ {𝐴} = {𝐴} |
| 34 | 33 | a1bi 352 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}) ↔ ({𝐴} = {𝐴} → ∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥}))) |
| 35 | 28, 32, 34 | 3bitr2ri 289 |
. . . . . 6
⊢ (({𝐴} = {𝐴} → ∃𝑥∃𝑦(𝑥 = 𝑦 ∧ 𝐴 = {𝑥})) ↔ ∃𝑤 𝐴 = {𝑤}) |
| 36 | 25, 35 | sylib 208 |
. . . . 5
⊢
(∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ∃𝑤 𝐴 = {𝑤}) |
| 37 | | eqid 2622 |
. . . . . 6
⊢ {𝐴, 𝐵} = {𝐴, 𝐵} |
| 38 | | prex 4909 |
. . . . . . 7
⊢ {𝐴, 𝐵} ∈ V |
| 39 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑧 = {𝐴, 𝐵} → (𝑧 = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴, 𝐵})) |
| 40 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑧 = {𝐴, 𝐵} → (𝑧 = 〈𝑥, 𝑦〉 ↔ {𝐴, 𝐵} = 〈𝑥, 𝑦〉)) |
| 41 | 40 | 2exbidv 1852 |
. . . . . . . 8
⊢ (𝑧 = {𝐴, 𝐵} → (∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉)) |
| 42 | 39, 41 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = {𝐴, 𝐵} → ((𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ↔ ({𝐴, 𝐵} = {𝐴, 𝐵} → ∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉))) |
| 43 | 38, 42 | spcv 3299 |
. . . . . 6
⊢
(∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ({𝐴, 𝐵} = {𝐴, 𝐵} → ∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉)) |
| 44 | 37, 43 | mpi 20 |
. . . . 5
⊢
(∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) → ∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉) |
| 45 | | eqcom 2629 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 𝑦〉 = {𝐴, 𝐵}) |
| 46 | 18, 19, 3, 4 | opeqpr 4968 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 = {𝐴, 𝐵} ↔ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∨ (𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥}))) |
| 47 | 45, 46 | bitri 264 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} = 〈𝑥, 𝑦〉 ↔ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∨ (𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥}))) |
| 48 | | idd 24 |
. . . . . . . . . 10
⊢ (𝐴 = {𝑤} → ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 49 | | eqtr2 2642 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 = {𝑤}) → {𝑥, 𝑦} = {𝑤}) |
| 50 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑤 ∈ V |
| 51 | 18, 19, 50 | preqsn 4393 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} = {𝑤} ↔ (𝑥 = 𝑦 ∧ 𝑦 = 𝑤)) |
| 52 | 51 | simplbi 476 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} = {𝑤} → 𝑥 = 𝑦) |
| 53 | 49, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 = {𝑤}) → 𝑥 = 𝑦) |
| 54 | | dfsn2 4190 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑥} = {𝑥, 𝑥} |
| 55 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦}) |
| 56 | 54, 55 | syl5req 2669 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥}) |
| 57 | 56 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝐴 = {𝑥, 𝑦} ↔ 𝐴 = {𝑥})) |
| 58 | 54, 55 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑥, 𝑦}) |
| 59 | 58 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝐵 = {𝑥} ↔ 𝐵 = {𝑥, 𝑦})) |
| 60 | 57, 59 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥}) ↔ (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 61 | 60 | biimpd 219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥}) → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 62 | 61 | expd 452 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝐴 = {𝑥, 𝑦} → (𝐵 = {𝑥} → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})))) |
| 63 | 62 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = {𝑥, 𝑦} → (𝑥 = 𝑦 → (𝐵 = {𝑥} → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})))) |
| 64 | 63 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 = {𝑤}) → (𝑥 = 𝑦 → (𝐵 = {𝑥} → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})))) |
| 65 | 53, 64 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 = {𝑤}) → (𝐵 = {𝑥} → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 66 | 65 | expcom 451 |
. . . . . . . . . . 11
⊢ (𝐴 = {𝑤} → (𝐴 = {𝑥, 𝑦} → (𝐵 = {𝑥} → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})))) |
| 67 | 66 | impd 447 |
. . . . . . . . . 10
⊢ (𝐴 = {𝑤} → ((𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥}) → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 68 | 48, 67 | jaod 395 |
. . . . . . . . 9
⊢ (𝐴 = {𝑤} → (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∨ (𝐴 = {𝑥, 𝑦} ∧ 𝐵 = {𝑥})) → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 69 | 47, 68 | syl5bi 232 |
. . . . . . . 8
⊢ (𝐴 = {𝑤} → ({𝐴, 𝐵} = 〈𝑥, 𝑦〉 → (𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 70 | 69 | 2eximdv 1848 |
. . . . . . 7
⊢ (𝐴 = {𝑤} → (∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉 → ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 71 | 70 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑤 𝐴 = {𝑤} → (∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉 → ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))) |
| 72 | 71 | imp 445 |
. . . . 5
⊢
((∃𝑤 𝐴 = {𝑤} ∧ ∃𝑥∃𝑦{𝐴, 𝐵} = 〈𝑥, 𝑦〉) → ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) |
| 73 | 36, 44, 72 | syl2an 494 |
. . . 4
⊢
((∀𝑧(𝑧 = {𝐴} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉) ∧ ∀𝑧(𝑧 = {𝐴, 𝐵} → ∃𝑥∃𝑦 𝑧 = 〈𝑥, 𝑦〉)) → ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) |
| 74 | 13, 73 | sylbi 207 |
. . 3
⊢
(〈𝐴, 𝐵〉 ⊆ (V × V)
→ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) |
| 75 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝐴 = {𝑥} ∧ 𝑧 = {𝐴}) → 𝑧 = {𝐴}) |
| 76 | | equid 1939 |
. . . . . . . . . . . . . 14
⊢ 𝑥 = 𝑥 |
| 77 | 76 | jctl 564 |
. . . . . . . . . . . . 13
⊢ (𝐴 = {𝑥} → (𝑥 = 𝑥 ∧ 𝐴 = {𝑥})) |
| 78 | 18, 18, 3 | opeqsn 4967 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑥〉 = {𝐴} ↔ (𝑥 = 𝑥 ∧ 𝐴 = {𝑥})) |
| 79 | 77, 78 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (𝐴 = {𝑥} → 〈𝑥, 𝑥〉 = {𝐴}) |
| 80 | 79 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 = {𝑥} ∧ 𝑧 = {𝐴}) → 〈𝑥, 𝑥〉 = {𝐴}) |
| 81 | 75, 80 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝐴 = {𝑥} ∧ 𝑧 = {𝐴}) → 𝑧 = 〈𝑥, 𝑥〉) |
| 82 | | opeq12 4404 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑥 ∧ 𝑣 = 𝑥) → 〈𝑤, 𝑣〉 = 〈𝑥, 𝑥〉) |
| 83 | 82 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑥 ∧ 𝑣 = 𝑥) → (𝑧 = 〈𝑤, 𝑣〉 ↔ 𝑧 = 〈𝑥, 𝑥〉)) |
| 84 | 18, 18, 83 | spc2ev 3301 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑥, 𝑥〉 → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 85 | 81, 84 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 = {𝑥} ∧ 𝑧 = {𝐴}) → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 86 | 85 | adantlr 751 |
. . . . . . . 8
⊢ (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∧ 𝑧 = {𝐴}) → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 87 | | preq12 4270 |
. . . . . . . . . . . 12
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → {𝐴, 𝐵} = {{𝑥}, {𝑥, 𝑦}}) |
| 88 | 87 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → (𝑧 = {𝐴, 𝐵} ↔ 𝑧 = {{𝑥}, {𝑥, 𝑦}})) |
| 89 | 88 | biimpa 501 |
. . . . . . . . . 10
⊢ (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∧ 𝑧 = {𝐴, 𝐵}) → 𝑧 = {{𝑥}, {𝑥, 𝑦}}) |
| 90 | 18, 19 | dfop 4401 |
. . . . . . . . . 10
⊢
〈𝑥, 𝑦〉 = {{𝑥}, {𝑥, 𝑦}} |
| 91 | 89, 90 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∧ 𝑧 = {𝐴, 𝐵}) → 𝑧 = 〈𝑥, 𝑦〉) |
| 92 | | opeq12 4404 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → 〈𝑤, 𝑣〉 = 〈𝑥, 𝑦〉) |
| 93 | 92 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (𝑧 = 〈𝑤, 𝑣〉 ↔ 𝑧 = 〈𝑥, 𝑦〉)) |
| 94 | 18, 19, 93 | spc2ev 3301 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 95 | 91, 94 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∧ 𝑧 = {𝐴, 𝐵}) → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 96 | 86, 95 | jaodan 826 |
. . . . . . 7
⊢ (((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) ∧ (𝑧 = {𝐴} ∨ 𝑧 = {𝐴, 𝐵})) → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 97 | 96 | ex 450 |
. . . . . 6
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → ((𝑧 = {𝐴} ∨ 𝑧 = {𝐴, 𝐵}) → ∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉)) |
| 98 | | elvv 5177 |
. . . . . 6
⊢ (𝑧 ∈ (V × V) ↔
∃𝑤∃𝑣 𝑧 = 〈𝑤, 𝑣〉) |
| 99 | 97, 5, 98 | 3imtr4g 285 |
. . . . 5
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → (𝑧 ∈ 〈𝐴, 𝐵〉 → 𝑧 ∈ (V × V))) |
| 100 | 99 | ssrdv 3609 |
. . . 4
⊢ ((𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → 〈𝐴, 𝐵〉 ⊆ (V ×
V)) |
| 101 | 100 | exlimivv 1860 |
. . 3
⊢
(∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}) → 〈𝐴, 𝐵〉 ⊆ (V ×
V)) |
| 102 | 74, 101 | impbii 199 |
. 2
⊢
(〈𝐴, 𝐵〉 ⊆ (V × V)
↔ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) |
| 103 | 1, 102 | bitri 264 |
1
⊢ (Rel
〈𝐴, 𝐵〉 ↔ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) |