MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqsn Structured version   Visualization version   Unicode version

Theorem opeqsn 4967
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqsn.1  |-  A  e. 
_V
opeqsn.2  |-  B  e. 
_V
opeqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
opeqsn  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . . . 4  |-  A  e. 
_V
2 opeqsn.2 . . . 4  |-  B  e. 
_V
31, 2dfop 4401 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43eqeq1i 2627 . 2  |-  ( <. A ,  B >.  =  { C }  <->  { { A } ,  { A ,  B } }  =  { C } )
5 snex 4908 . . 3  |-  { A }  e.  _V
6 prex 4909 . . 3  |-  { A ,  B }  e.  _V
7 opeqsn.3 . . 3  |-  C  e. 
_V
85, 6, 7preqsn 4393 . 2  |-  ( { { A } ,  { A ,  B } }  =  { C } 
<->  ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C
) )
9 eqcom 2629 . . . . 5  |-  ( { A }  =  { A ,  B }  <->  { A ,  B }  =  { A } )
101, 2, 1preqsn 4393 . . . . 5  |-  ( { A ,  B }  =  { A }  <->  ( A  =  B  /\  B  =  A ) )
11 eqcom 2629 . . . . . . 7  |-  ( B  =  A  <->  A  =  B )
1211anbi2i 730 . . . . . 6  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
13 anidm 676 . . . . . 6  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
1412, 13bitri 264 . . . . 5  |-  ( ( A  =  B  /\  B  =  A )  <->  A  =  B )
159, 10, 143bitri 286 . . . 4  |-  ( { A }  =  { A ,  B }  <->  A  =  B )
1615anbi1i 731 . . 3  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  { A ,  B }  =  C ) )
17 dfsn2 4190 . . . . . . 7  |-  { A }  =  { A ,  A }
18 preq2 4269 . . . . . . 7  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
1917, 18syl5req 2669 . . . . . 6  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
2019eqeq1d 2624 . . . . 5  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  { A }  =  C ) )
21 eqcom 2629 . . . . 5  |-  ( { A }  =  C  <-> 
C  =  { A } )
2220, 21syl6bb 276 . . . 4  |-  ( A  =  B  ->  ( { A ,  B }  =  C  <->  C  =  { A } ) )
2322pm5.32i 669 . . 3  |-  ( ( A  =  B  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
2416, 23bitri 264 . 2  |-  ( ( { A }  =  { A ,  B }  /\  { A ,  B }  =  C )  <->  ( A  =  B  /\  C  =  { A } ) )
254, 8, 243bitri 286 1  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   {cpr 4179   <.cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  snopeqop  4969  propeqop  4970  relop  5272
  Copyright terms: Public domain W3C validator