MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Visualization version   GIF version

Theorem ordelinel 5825
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordelinel ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 5824 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
213adant3 1081 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
3 eleq1a 2696 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐴 = (𝐴𝐵) → 𝐴𝐶))
4 eleq1a 2696 . . . 4 ((𝐴𝐵) ∈ 𝐶 → (𝐵 = (𝐴𝐵) → 𝐵𝐶))
53, 4orim12d 883 . . 3 ((𝐴𝐵) ∈ 𝐶 → ((𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)) → (𝐴𝐶𝐵𝐶)))
62, 5syl5com 31 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 → (𝐴𝐶𝐵𝐶)))
7 ordin 5753 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
8 inss1 3833 . . . . 5 (𝐴𝐵) ⊆ 𝐴
9 ordtr2 5768 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐴𝐴𝐶) → (𝐴𝐵) ∈ 𝐶))
108, 9mpani 712 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐴𝐶 → (𝐴𝐵) ∈ 𝐶))
11 inss2 3834 . . . . 5 (𝐴𝐵) ⊆ 𝐵
12 ordtr2 5768 . . . . 5 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (((𝐴𝐵) ⊆ 𝐵𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
1311, 12mpani 712 . . . 4 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵) ∈ 𝐶))
1410, 13jaod 395 . . 3 ((Ord (𝐴𝐵) ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
157, 14stoic3 1701 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
166, 15impbid 202 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  wss 3574  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  mreexexdOLD  16309
  Copyright terms: Public domain W3C validator