![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelinel | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordelinel | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or3 5824 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | |
2 | 1 | 3adant3 1081 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
3 | eleq1a 2696 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 = (𝐴 ∩ 𝐵) → 𝐴 ∈ 𝐶)) | |
4 | eleq1a 2696 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐵 = (𝐴 ∩ 𝐵) → 𝐵 ∈ 𝐶)) | |
5 | 3, 4 | orim12d 883 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → ((𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵)) → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
6 | 2, 5 | syl5com 31 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
7 | ordin 5753 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
8 | inss1 3833 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
9 | ordtr2 5768 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
10 | 8, 9 | mpani 712 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
11 | inss2 3834 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
12 | ordtr2 5768 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
13 | 11, 12 | mpani 712 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
14 | 10, 13 | jaod 395 | . . 3 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
15 | 7, 14 | stoic3 1701 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
16 | 6, 15 | impbid 202 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 Ord word 5722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 |
This theorem is referenced by: mreexexdOLD 16309 |
Copyright terms: Public domain | W3C validator |