MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Visualization version   Unicode version

Theorem ordelinel 5825
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordelinel  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 5824 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
213adant3 1081 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  =  ( A  i^i  B
)  \/  B  =  ( A  i^i  B
) ) )
3 eleq1a 2696 . . . 4  |-  ( ( A  i^i  B )  e.  C  ->  ( A  =  ( A  i^i  B )  ->  A  e.  C ) )
4 eleq1a 2696 . . . 4  |-  ( ( A  i^i  B )  e.  C  ->  ( B  =  ( A  i^i  B )  ->  B  e.  C ) )
53, 4orim12d 883 . . 3  |-  ( ( A  i^i  B )  e.  C  ->  (
( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B ) )  ->  ( A  e.  C  \/  B  e.  C ) ) )
62, 5syl5com 31 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
7 ordin 5753 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
8 inss1 3833 . . . . 5  |-  ( A  i^i  B )  C_  A
9 ordtr2 5768 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  A  /\  A  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
108, 9mpani 712 . . . 4  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( A  e.  C  ->  ( A  i^i  B )  e.  C ) )
11 inss2 3834 . . . . 5  |-  ( A  i^i  B )  C_  B
12 ordtr2 5768 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  B  /\  B  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
1311, 12mpani 712 . . . 4  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( B  e.  C  ->  ( A  i^i  B )  e.  C ) )
1410, 13jaod 395 . . 3  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( ( A  e.  C  \/  B  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
157, 14stoic3 1701 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  e.  C  \/  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
166, 15impbid 202 1  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  mreexexdOLD  16309
  Copyright terms: Public domain W3C validator