![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval2 | Structured version Visualization version GIF version |
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
orvcval2 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
2 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
4 | 1, 2, 3 | orvcval 30519 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
5 | funfn 5918 | . . . 4 ⊢ (Fun 𝑋 ↔ 𝑋 Fn dom 𝑋) | |
6 | 1, 5 | sylib 208 | . . 3 ⊢ (𝜑 → 𝑋 Fn dom 𝑋) |
7 | fncnvima2 6339 | . . 3 ⊢ (𝑋 Fn dom 𝑋 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}}) |
9 | fvex 6201 | . . . . . 6 ⊢ (𝑋‘𝑧) ∈ V | |
10 | breq1 4656 | . . . . . 6 ⊢ (𝑦 = (𝑋‘𝑧) → (𝑦𝑅𝐴 ↔ (𝑋‘𝑧)𝑅𝐴)) | |
11 | 9, 10 | elab 3350 | . . . . 5 ⊢ ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴) |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝑧 ∈ dom 𝑋 → ((𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴} ↔ (𝑋‘𝑧)𝑅𝐴)) |
13 | 12 | rabbiia 3185 | . . 3 ⊢ {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴} |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧) ∈ {𝑦 ∣ 𝑦𝑅𝐴}} = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
15 | 4, 8, 14 | 3eqtrd 2660 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 class class class wbr 4653 ◡ccnv 5113 dom cdm 5114 “ cima 5117 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 ∘RV/𝑐corvc 30517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-orvc 30518 |
This theorem is referenced by: elorvc 30521 |
Copyright terms: Public domain | W3C validator |