Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval2 Structured version   Visualization version   Unicode version

Theorem orvcval2 30520
Description: Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1  |-  ( ph  ->  Fun  X )
orvcval.2  |-  ( ph  ->  X  e.  V )
orvcval.3  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
orvcval2  |-  ( ph  ->  ( XRV/𝑐 R A )  =  {
z  e.  dom  X  |  ( X `  z ) R A } )
Distinct variable groups:    z, A    z, R    z, X
Allowed substitution hints:    ph( z)    V( z)    W( z)

Proof of Theorem orvcval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 orvcval.1 . . 3  |-  ( ph  ->  Fun  X )
2 orvcval.2 . . 3  |-  ( ph  ->  X  e.  V )
3 orvcval.3 . . 3  |-  ( ph  ->  A  e.  W )
41, 2, 3orvcval 30519 . 2  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  |  y R A } ) )
5 funfn 5918 . . . 4  |-  ( Fun 
X  <->  X  Fn  dom  X )
61, 5sylib 208 . . 3  |-  ( ph  ->  X  Fn  dom  X
)
7 fncnvima2 6339 . . 3  |-  ( X  Fn  dom  X  -> 
( `' X " { y  |  y R A } )  =  { z  e. 
dom  X  |  ( X `  z )  e.  { y  |  y R A } }
)
86, 7syl 17 . 2  |-  ( ph  ->  ( `' X " { y  |  y R A } )  =  { z  e. 
dom  X  |  ( X `  z )  e.  { y  |  y R A } }
)
9 fvex 6201 . . . . . 6  |-  ( X `
 z )  e. 
_V
10 breq1 4656 . . . . . 6  |-  ( y  =  ( X `  z )  ->  (
y R A  <->  ( X `  z ) R A ) )
119, 10elab 3350 . . . . 5  |-  ( ( X `  z )  e.  { y  |  y R A }  <->  ( X `  z ) R A )
1211a1i 11 . . . 4  |-  ( z  e.  dom  X  -> 
( ( X `  z )  e.  {
y  |  y R A }  <->  ( X `  z ) R A ) )
1312rabbiia 3185 . . 3  |-  { z  e.  dom  X  | 
( X `  z
)  e.  { y  |  y R A } }  =  {
z  e.  dom  X  |  ( X `  z ) R A }
1413a1i 11 . 2  |-  ( ph  ->  { z  e.  dom  X  |  ( X `  z )  e.  {
y  |  y R A } }  =  { z  e.  dom  X  |  ( X `  z ) R A } )
154, 8, 143eqtrd 2660 1  |-  ( ph  ->  ( XRV/𝑐 R A )  =  {
z  e.  dom  X  |  ( X `  z ) R A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  ∘RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-orvc 30518
This theorem is referenced by:  elorvc  30521
  Copyright terms: Public domain W3C validator