![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval | Structured version Visualization version GIF version |
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
orvcval | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-orvc 30518 | . . 3 ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}))) |
3 | simpl 473 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑥 = 𝑋) | |
4 | 3 | cnveqd 5298 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → ◡𝑥 = ◡𝑋) |
5 | simpr 477 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
6 | 5 | breq2d 4665 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (𝑦𝑅𝑎 ↔ 𝑦𝑅𝐴)) |
7 | 6 | abbidv 2741 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → {𝑦 ∣ 𝑦𝑅𝑎} = {𝑦 ∣ 𝑦𝑅𝐴}) |
8 | 4, 7 | imaeq12d 5467 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑎 = 𝐴)) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
10 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
11 | orvcval.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | funeq 5908 | . . . . 5 ⊢ (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋)) | |
13 | 12 | elabg 3351 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ Fun 𝑥} ↔ Fun 𝑋)) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∣ Fun 𝑥} ↔ Fun 𝑋)) |
15 | 10, 14 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∣ Fun 𝑥}) |
16 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
17 | elex 3212 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
19 | cnvexg 7112 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ◡𝑋 ∈ V) | |
20 | imaexg 7103 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) | |
21 | 11, 19, 20 | 3syl 18 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) |
22 | 2, 9, 15, 18, 21 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 Vcvv 3200 class class class wbr 4653 ◡ccnv 5113 “ cima 5117 Fun wfun 5882 (class class class)co 6650 ↦ cmpt2 6652 ∘RV/𝑐corvc 30517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-orvc 30518 |
This theorem is referenced by: orvcval2 30520 orvcval4 30522 |
Copyright terms: Public domain | W3C validator |