Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval4 Structured version   Visualization version   GIF version

Theorem orvcval4 30522
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 30519. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1 (𝜑𝑆 ran sigAlgebra)
orvccel.2 (𝜑𝐽 ∈ Top)
orvccel.3 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
orvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋   𝑦,𝐽
Allowed substitution hints:   𝜑(𝑦)   𝑆(𝑦)   𝑉(𝑦)

Proof of Theorem orvcval4
StepHypRef Expression
1 orvccel.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
2 orvccel.2 . . . . . 6 (𝜑𝐽 ∈ Top)
32sgsiga 30205 . . . . 5 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
4 orvccel.3 . . . . 5 (𝜑𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽)))
51, 3, 4isanmbfm 30318 . . . 4 (𝜑𝑋 ran MblFnM)
65mbfmfun 30316 . . 3 (𝜑 → Fun 𝑋)
71, 3, 4mbfmf 30317 . . . . 5 (𝜑𝑋: 𝑆 (sigaGen‘𝐽))
8 elex 3212 . . . . . . 7 (𝐽 ∈ Top → 𝐽 ∈ V)
9 unisg 30206 . . . . . . 7 (𝐽 ∈ V → (sigaGen‘𝐽) = 𝐽)
102, 8, 93syl 18 . . . . . 6 (𝜑 (sigaGen‘𝐽) = 𝐽)
1110feq3d 6032 . . . . 5 (𝜑 → (𝑋: 𝑆 (sigaGen‘𝐽) ↔ 𝑋: 𝑆 𝐽))
127, 11mpbid 222 . . . 4 (𝜑𝑋: 𝑆 𝐽)
13 frn 6053 . . . 4 (𝑋: 𝑆 𝐽 → ran 𝑋 𝐽)
1412, 13syl 17 . . 3 (𝜑 → ran 𝑋 𝐽)
15 fimacnvinrn2 6349 . . 3 ((Fun 𝑋 ∧ ran 𝑋 𝐽) → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
166, 14, 15syl2anc 693 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
17 orvccel.4 . . 3 (𝜑𝐴𝑉)
186, 4, 17orvcval 30519 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
19 dfrab2 3903 . . . 4 {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽)
2019a1i 11 . . 3 (𝜑 → {𝑦 𝐽𝑦𝑅𝐴} = ({𝑦𝑦𝑅𝐴} ∩ 𝐽))
2120imaeq2d 5466 . 2 (𝜑 → (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}) = (𝑋 “ ({𝑦𝑦𝑅𝐴} ∩ 𝐽)))
2216, 18, 213eqtr4d 2666 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 𝐽𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  Vcvv 3200  cin 3573  wss 3574   cuni 4436   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  sigAlgebracsiga 30170  sigaGencsigagen 30201  MblFnMcmbfm 30312  RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-siga 30171  df-sigagen 30202  df-mbfm 30313  df-orvc 30518
This theorem is referenced by:  orvcoel  30523  orvccel  30524  orrvcval4  30526
  Copyright terms: Public domain W3C validator