Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval4 Structured version   Visualization version   Unicode version

Theorem orvcval4 30522
Description: The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 30519. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orvccel.1  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
orvccel.2  |-  ( ph  ->  J  e.  Top )
orvccel.3  |-  ( ph  ->  X  e.  ( SMblFnM (sigaGen `  J )
) )
orvccel.4  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
orvcval4  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  e.  U. J  | 
y R A }
) )
Distinct variable groups:    y, A    y, R    y, X    y, J
Allowed substitution hints:    ph( y)    S( y)    V( y)

Proof of Theorem orvcval4
StepHypRef Expression
1 orvccel.1 . . . . 5  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
2 orvccel.2 . . . . . 6  |-  ( ph  ->  J  e.  Top )
32sgsiga 30205 . . . . 5  |-  ( ph  ->  (sigaGen `  J )  e.  U. ran sigAlgebra )
4 orvccel.3 . . . . 5  |-  ( ph  ->  X  e.  ( SMblFnM (sigaGen `  J )
) )
51, 3, 4isanmbfm 30318 . . . 4  |-  ( ph  ->  X  e.  U. ran MblFnM )
65mbfmfun 30316 . . 3  |-  ( ph  ->  Fun  X )
71, 3, 4mbfmf 30317 . . . . 5  |-  ( ph  ->  X : U. S --> U. (sigaGen `  J )
)
8 elex 3212 . . . . . . 7  |-  ( J  e.  Top  ->  J  e.  _V )
9 unisg 30206 . . . . . . 7  |-  ( J  e.  _V  ->  U. (sigaGen `  J )  =  U. J )
102, 8, 93syl 18 . . . . . 6  |-  ( ph  ->  U. (sigaGen `  J
)  =  U. J
)
1110feq3d 6032 . . . . 5  |-  ( ph  ->  ( X : U. S
--> U. (sigaGen `  J
)  <->  X : U. S --> U. J ) )
127, 11mpbid 222 . . . 4  |-  ( ph  ->  X : U. S --> U. J )
13 frn 6053 . . . 4  |-  ( X : U. S --> U. J  ->  ran  X  C_  U. J
)
1412, 13syl 17 . . 3  |-  ( ph  ->  ran  X  C_  U. J
)
15 fimacnvinrn2 6349 . . 3  |-  ( ( Fun  X  /\  ran  X 
C_  U. J )  -> 
( `' X " { y  |  y R A } )  =  ( `' X " ( { y  |  y R A }  i^i  U. J ) ) )
166, 14, 15syl2anc 693 . 2  |-  ( ph  ->  ( `' X " { y  |  y R A } )  =  ( `' X " ( { y  |  y R A }  i^i  U. J ) ) )
17 orvccel.4 . . 3  |-  ( ph  ->  A  e.  V )
186, 4, 17orvcval 30519 . 2  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  |  y R A } ) )
19 dfrab2 3903 . . . 4  |-  { y  e.  U. J  | 
y R A }  =  ( { y  |  y R A }  i^i  U. J
)
2019a1i 11 . . 3  |-  ( ph  ->  { y  e.  U. J  |  y R A }  =  ( { y  |  y R A }  i^i  U. J ) )
2120imaeq2d 5466 . 2  |-  ( ph  ->  ( `' X " { y  e.  U. J  |  y R A } )  =  ( `' X " ( { y  |  y R A }  i^i  U. J ) ) )
2216, 18, 213eqtr4d 2666 1  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  e.  U. J  | 
y R A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  sigAlgebracsiga 30170  sigaGencsigagen 30201  MblFnMcmbfm 30312  ∘RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-siga 30171  df-sigagen 30202  df-mbfm 30313  df-orvc 30518
This theorem is referenced by:  orvcoel  30523  orvccel  30524  orrvcval4  30526
  Copyright terms: Public domain W3C validator