Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem7N Structured version   Visualization version   GIF version

Theorem osumcllem7N 35248
Description: Lemma for osumclN 35253. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem7N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑌,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐶(𝑞,𝑝)   + (𝑝)   𝑈(𝑞,𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem osumcllem7N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp11 1091 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ HL)
2 hllat 34650 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ Lat)
4 simp12 1092 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋𝐴)
5 simp23 1096 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝𝐴)
6 simp22 1095 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋 ≠ ∅)
7 inss2 3834 . . . . . 6 (𝑌𝑀) ⊆ 𝑀
87sseli 3599 . . . . 5 (𝑞 ∈ (𝑌𝑀) → 𝑞𝑀)
983ad2ant3 1084 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞𝑀)
10 osumcllem.m . . . 4 𝑀 = (𝑋 + {𝑝})
119, 10syl6eleq 2711 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞 ∈ (𝑋 + {𝑝}))
12 osumcllem.l . . . 4 = (le‘𝐾)
13 osumcllem.j . . . 4 = (join‘𝐾)
14 osumcllem.a . . . 4 𝐴 = (Atoms‘𝐾)
15 osumcllem.p . . . 4 + = (+𝑃𝐾)
1612, 13, 14, 15elpaddatiN 35091 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
173, 4, 5, 6, 11, 16syl32anc 1334 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
18 simp11 1091 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴))
19 simp121 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑋 ⊆ ( 𝑌))
20 simp123 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝𝐴)
21 simp2 1062 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑟𝑋)
22 inss1 3833 . . . . 5 (𝑌𝑀) ⊆ 𝑌
23 simp13 1093 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 ∈ (𝑌𝑀))
2422, 23sseldi 3601 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞𝑌)
25 simp3 1063 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 (𝑟 𝑝))
26 osumcllem.o . . . . 5 = (⊥𝑃𝐾)
27 osumcllem.c . . . . 5 𝐶 = (PSubCl‘𝐾)
28 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
2912, 13, 14, 15, 26, 27, 10, 28osumcllem6N 35247 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑝𝐴) ∧ (𝑟𝑋𝑞𝑌𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌))
3018, 19, 20, 21, 24, 25, 29syl123anc 1343 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + 𝑌))
3130rexlimdv3a 3033 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + 𝑌)))
3217, 31mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  HLchlt 34637  +𝑃cpadd 35081  𝑃cpolN 35188  PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-padd 35082  df-polarityN 35189
This theorem is referenced by:  osumcllem8N  35249
  Copyright terms: Public domain W3C validator