MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Visualization version   GIF version

Theorem gsumpropd2lem 17273
Description: Lemma for gsumpropd2 17274. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
gsumprop2dlem.1 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
gsumprop2dlem.2 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
Assertion
Ref Expression
gsumpropd2lem (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑡,𝑠,𝐹   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2lem
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
21adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.e . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2624 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
53oveqrspc2v 6673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
65oveqrspc2v 6673 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
76ancom2s 844 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
87eqeq1d 2624 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
94, 8anbi12d 747 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
109anassrs 680 . . . . . 6 (((𝜑𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
112, 10raleqbidva 3154 . . . . 5 ((𝜑𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
121, 11rabeqbidva 3196 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
1312sseq2d 3633 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
14 eqidd 2623 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
1514, 1, 3grpidpropd 17261 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
16 simprl 794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
17 gsumpropd2.r . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1817ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
19 gsumpropd2.n . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐹)
2019ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
21 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
22 simplrr 801 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
2321, 22eleqtrrd 2704 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
24 fvelrn 6352 . . . . . . . . . . . . 13 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
2520, 23, 24syl2anc 693 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
2618, 25sseldd 3604 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
27 gsumpropd2.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
2827adantlr 751 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
293adantlr 751 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
3016, 26, 28, 29seqfeq4 12850 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3130eqeq2d 2632 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3231anassrs 680 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3332pm5.32da 673 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3433rexbidva 3049 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3534exbidv 1850 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635iotabidv 5872 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3712difeq2d 3728 . . . . . . . . . . . . . . 15 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
3837imaeq2d 5466 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
4138, 39, 403eqtr4g 2681 . . . . . . . . . . . . 13 (𝜑𝐴 = 𝐵)
4241fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (#‘𝐴) = (#‘𝐵))
4342fveq2d 6195 . . . . . . . . . . 11 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)))
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)))
45 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → (#‘𝐵) ∈ (ℤ‘1))
4617ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺))
47 f1ofun 6139 . . . . . . . . . . . . . . . 16 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Fun 𝑓)
4847ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → Fun 𝑓)
49 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ (1...(#‘𝐵)))
50 f1odm 6141 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(#‘𝐴)))
5150ad3antlr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → dom 𝑓 = (1...(#‘𝐴)))
5242oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(#‘𝐴)) = (1...(#‘𝐵)))
5352ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (1...(#‘𝐴)) = (1...(#‘𝐵)))
5451, 53eqtrd 2656 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → dom 𝑓 = (1...(#‘𝐵)))
5549, 54eleqtrrd 2704 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ dom 𝑓)
56 fvco 6274 . . . . . . . . . . . . . . 15 ((Fun 𝑓𝑎 ∈ dom 𝑓) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5748, 55, 56syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5819ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → Fun 𝐹)
59 difpreima 6343 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐹 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6019, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6139, 60syl5eq 2668 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
62 difss 3737 . . . . . . . . . . . . . . . . . . 19 ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ⊆ (𝐹 “ V)
6361, 62syl6eqss 3655 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (𝐹 “ V))
64 dfdm4 5316 . . . . . . . . . . . . . . . . . . 19 dom 𝐹 = ran 𝐹
65 dfrn4 5595 . . . . . . . . . . . . . . . . . . 19 ran 𝐹 = (𝐹 “ V)
6664, 65eqtri 2644 . . . . . . . . . . . . . . . . . 18 dom 𝐹 = (𝐹 “ V)
6763, 66syl6sseqr 3652 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ dom 𝐹)
6867ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝐴 ⊆ dom 𝐹)
69 f1of 6137 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
7069ad3antlr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑓:(1...(#‘𝐴))⟶𝐴)
7149, 53eleqtrrd 2704 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → 𝑎 ∈ (1...(#‘𝐴)))
7270, 71ffvelrnd 6360 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝑓𝑎) ∈ 𝐴)
7368, 72sseldd 3604 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝑓𝑎) ∈ dom 𝐹)
74 fvelrn 6352 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ (𝑓𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7558, 73, 74syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7657, 75eqeltrd 2701 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ ran 𝐹)
7746, 76sseldd 3604 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(#‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ (Base‘𝐺))
78 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → 𝜑)
7927caovclg 6826 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8078, 79sylan 488 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8178, 5sylan 488 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
8245, 77, 80, 81seqfeq4 12850 . . . . . . . . . . 11 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
83 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ (ℤ‘1))
84 1z 11407 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
85 seqfn 12813 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1))
86 fndm 5990 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1))
8784, 85, 86mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1)
8887eleq2i 2693 . . . . . . . . . . . . . . 15 ((#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) ↔ (#‘𝐵) ∈ (ℤ‘1))
8983, 88sylnibr 319 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)))
90 ndmfv 6218 . . . . . . . . . . . . . 14 (¬ (#‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = ∅)
92 seqfn 12813 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1))
93 fndm 5990 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1))
9484, 92, 93mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1)
9594eleq2i 2693 . . . . . . . . . . . . . . 15 ((#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) ↔ (#‘𝐵) ∈ (ℤ‘1))
9683, 95sylnibr 319 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → ¬ (#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)))
97 ndmfv 6218 . . . . . . . . . . . . . 14 (¬ (#‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) → (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9896, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)) = ∅)
9991, 98eqtr4d 2659 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10099adantlr 751 . . . . . . . . . . 11 (((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ ¬ (#‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10182, 100pm2.61dan 832 . . . . . . . . . 10 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
10244, 101eqtrd 2656 . . . . . . . . 9 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))
103102eqeq2d 2632 . . . . . . . 8 ((𝜑𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))))
104103pm5.32da 673 . . . . . . 7 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
105 f1oeq2 6128 . . . . . . . . . 10 ((1...(#‘𝐴)) = (1...(#‘𝐵)) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐴))
10652, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐴))
107 f1oeq3 6129 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑓:(1...(#‘𝐵))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
10841, 107syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(#‘𝐵))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
109106, 108bitrd 268 . . . . . . . 8 (𝜑 → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐵))–1-1-onto𝐵))
110109anbi1d 741 . . . . . . 7 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))) ↔ (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
111104, 110bitrd 268 . . . . . 6 (𝜑 → ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ (𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
112111exbidv 1850 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))) ↔ ∃𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
113112iotabidv 5872 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))) = (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))
11436, 113ifeq12d 4106 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵))))))
11513, 15, 114ifbieq12d 4113 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))))
116 eqid 2622 . . 3 (Base‘𝐺) = (Base‘𝐺)
117 eqid 2622 . . 3 (0g𝐺) = (0g𝐺)
118 eqid 2622 . . 3 (+g𝐺) = (+g𝐺)
119 eqid 2622 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
12039a1i 11 . . 3 (𝜑𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
121 gsumpropd2.g . . 3 (𝜑𝐺𝑊)
122 gsumpropd2.f . . 3 (𝜑𝐹𝑉)
123 eqidd 2623 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
124116, 117, 118, 119, 120, 121, 122, 123gsumvalx 17270 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(#‘𝐴)))))))
125 eqid 2622 . . 3 (Base‘𝐻) = (Base‘𝐻)
126 eqid 2622 . . 3 (0g𝐻) = (0g𝐻)
127 eqid 2622 . . 3 (+g𝐻) = (+g𝐻)
128 eqid 2622 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
12940a1i 11 . . 3 (𝜑𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
130 gsumpropd2.h . . 3 (𝜑𝐻𝑋)
131125, 126, 127, 128, 129, 130, 122, 123gsumvalx 17270 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(#‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(#‘𝐵)))))))
132115, 124, 1313eqtr4d 2666 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  cio 5849  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1c1 9937  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-gsum 16103
This theorem is referenced by:  gsumpropd2  17274
  Copyright terms: Public domain W3C validator