MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclpropd Structured version   Visualization version   GIF version

Theorem asclpropd 19346
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
asclpropd.f 𝐹 = (Scalar‘𝐾)
asclpropd.g 𝐺 = (Scalar‘𝐿)
asclpropd.1 (𝜑𝑃 = (Base‘𝐹))
asclpropd.2 (𝜑𝑃 = (Base‘𝐺))
asclpropd.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
asclpropd.4 (𝜑 → (1r𝐾) = (1r𝐿))
asclpropd.5 (𝜑 → (1r𝐾) ∈ 𝑊)
Assertion
Ref Expression
asclpropd (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem asclpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 asclpropd.5 . . . . . 6 (𝜑 → (1r𝐾) ∈ 𝑊)
2 asclpropd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
32oveqrspc2v 6673 . . . . . . 7 ((𝜑 ∧ (𝑧𝑃 ∧ (1r𝐾) ∈ 𝑊)) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
43anassrs 680 . . . . . 6 (((𝜑𝑧𝑃) ∧ (1r𝐾) ∈ 𝑊) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
51, 4mpidan 704 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
6 asclpropd.4 . . . . . . 7 (𝜑 → (1r𝐾) = (1r𝐿))
76oveq2d 6666 . . . . . 6 (𝜑 → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
87adantr 481 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
95, 8eqtrd 2656 . . . 4 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
109mpteq2dva 4744 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
11 asclpropd.1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
1211mpteq1d 4738 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))))
13 asclpropd.2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
1413mpteq1d 4738 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
1510, 12, 143eqtr3d 2664 . 2 (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
16 eqid 2622 . . 3 (algSc‘𝐾) = (algSc‘𝐾)
17 asclpropd.f . . 3 𝐹 = (Scalar‘𝐾)
18 eqid 2622 . . 3 (Base‘𝐹) = (Base‘𝐹)
19 eqid 2622 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
20 eqid 2622 . . 3 (1r𝐾) = (1r𝐾)
2116, 17, 18, 19, 20asclfval 19334 . 2 (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾)))
22 eqid 2622 . . 3 (algSc‘𝐿) = (algSc‘𝐿)
23 asclpropd.g . . 3 𝐺 = (Scalar‘𝐿)
24 eqid 2622 . . 3 (Base‘𝐺) = (Base‘𝐺)
25 eqid 2622 . . 3 ( ·𝑠𝐿) = ( ·𝑠𝐿)
26 eqid 2622 . . 3 (1r𝐿) = (1r𝐿)
2722, 23, 24, 25, 26asclfval 19334 . 2 (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿)))
2815, 21, 273eqtr4g 2681 1 (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  1rcur 18501  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-slot 15861  df-base 15863  df-ascl 19314
This theorem is referenced by:  ply1ascl  19628
  Copyright terms: Public domain W3C validator