| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpt2df | Structured version Visualization version Unicode version | ||
| Description: Alternate deduction version of ovmpt2 6796, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpt2df.1 |
|
| ovmpt2df.2 |
|
| ovmpt2df.3 |
|
| ovmpt2df.4 |
|
| ovmpt2df.5 |
|
| ovmpt2df.6 |
|
| ovmpt2df.7 |
|
| ovmpt2df.8 |
|
| Ref | Expression |
|---|---|
| ovmpt2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. 2
| |
| 2 | ovmpt2df.5 |
. . . 4
| |
| 3 | nfmpt21 6722 |
. . . 4
| |
| 4 | 2, 3 | nfeq 2776 |
. . 3
|
| 5 | ovmpt2df.6 |
. . 3
| |
| 6 | 4, 5 | nfim 1825 |
. 2
|
| 7 | ovmpt2df.1 |
. . . 4
| |
| 8 | elex 3212 |
. . . 4
| |
| 9 | 7, 8 | syl 17 |
. . 3
|
| 10 | isset 3207 |
. . 3
| |
| 11 | 9, 10 | sylib 208 |
. 2
|
| 12 | ovmpt2df.2 |
. . . . 5
| |
| 13 | elex 3212 |
. . . . 5
| |
| 14 | 12, 13 | syl 17 |
. . . 4
|
| 15 | isset 3207 |
. . . 4
| |
| 16 | 14, 15 | sylib 208 |
. . 3
|
| 17 | nfv 1843 |
. . . 4
| |
| 18 | ovmpt2df.7 |
. . . . . 6
| |
| 19 | nfmpt22 6723 |
. . . . . 6
| |
| 20 | 18, 19 | nfeq 2776 |
. . . . 5
|
| 21 | ovmpt2df.8 |
. . . . 5
| |
| 22 | 20, 21 | nfim 1825 |
. . . 4
|
| 23 | oveq 6656 |
. . . . . 6
| |
| 24 | simprl 794 |
. . . . . . . . . 10
| |
| 25 | simprr 796 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | oveq12d 6668 |
. . . . . . . . 9
|
| 27 | 7 | adantr 481 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeltrd 2701 |
. . . . . . . . . 10
|
| 29 | 12 | adantrr 753 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | eqeltrd 2701 |
. . . . . . . . . 10
|
| 31 | ovmpt2df.3 |
. . . . . . . . . 10
| |
| 32 | eqid 2622 |
. . . . . . . . . . 11
| |
| 33 | 32 | ovmpt4g 6783 |
. . . . . . . . . 10
|
| 34 | 28, 30, 31, 33 | syl3anc 1326 |
. . . . . . . . 9
|
| 35 | 26, 34 | eqtr3d 2658 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2632 |
. . . . . . 7
|
| 37 | ovmpt2df.4 |
. . . . . . 7
| |
| 38 | 36, 37 | sylbid 230 |
. . . . . 6
|
| 39 | 23, 38 | syl5 34 |
. . . . 5
|
| 40 | 39 | expr 643 |
. . . 4
|
| 41 | 17, 22, 40 | exlimd 2087 |
. . 3
|
| 42 | 16, 41 | mpd 15 |
. 2
|
| 43 | 1, 6, 11, 42 | exlimdd 2088 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: ovmpt2dv 6793 ovmpt2dv2 6794 |
| Copyright terms: Public domain | W3C validator |