| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝐾 ∈ HL) |
| 2 | | hllat 34650 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝐾 ∈ Lat) |
| 4 | | simpl2 1065 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑋 ⊆ 𝐴) |
| 5 | | simpl3 1066 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ 𝐴) |
| 6 | | simprl 794 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑋 ≠ ∅) |
| 7 | | inss2 3834 |
. . . . . 6
⊢ (( ⊥
‘𝑋) ∩ 𝑀) ⊆ 𝑀 |
| 8 | 7 | sseli 3599 |
. . . . 5
⊢ (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑞 ∈ 𝑀) |
| 9 | | pexmidlem.m |
. . . . 5
⊢ 𝑀 = (𝑋 + {𝑝}) |
| 10 | 8, 9 | syl6eleq 2711 |
. . . 4
⊢ (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑞 ∈ (𝑋 + {𝑝})) |
| 11 | 10 | ad2antll 765 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑞 ∈ (𝑋 + {𝑝})) |
| 12 | | pexmidlem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 13 | | pexmidlem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 14 | | pexmidlem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 15 | | pexmidlem.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
| 16 | 12, 13, 14, 15 | elpaddatiN 35091 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
| 17 | 3, 4, 5, 6, 11, 16 | syl32anc 1334 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
| 18 | | simp1 1061 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴)) |
| 19 | | simp3l 1089 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑟 ∈ 𝑋) |
| 20 | | inss1 3833 |
. . . . . . 7
⊢ (( ⊥
‘𝑋) ∩ 𝑀) ⊆ ( ⊥ ‘𝑋) |
| 21 | | simp2r 1088 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) |
| 22 | 20, 21 | sseldi 3601 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ ( ⊥ ‘𝑋)) |
| 23 | | simp3r 1090 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ≤ (𝑟 ∨ 𝑝)) |
| 24 | | pexmidlem.o |
. . . . . . 7
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 25 | 12, 13, 14, 15, 24, 9 | pexmidlem3N 35258 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| 26 | 18, 19, 22, 23, 25 | syl121anc 1331 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| 27 | 26 | 3expia 1267 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → ((𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
| 28 | 27 | expd 452 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → (𝑟 ∈ 𝑋 → (𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))))) |
| 29 | 28 | rexlimdv 3030 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → (∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
| 30 | 17, 29 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |