![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtpnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtpnf2.1 | ⊢ Ⅎ𝑥𝐹 |
pimgtpnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimgtpnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑦+∞ < (𝐹‘𝑥) | |
4 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑥+∞ | |
5 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑥 < | |
6 | pimgtpnf2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
7 | nfcv 2764 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
8 | 6, 7 | nffv 6198 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
9 | 4, 5, 8 | nfbr 4699 | . . . 4 ⊢ Ⅎ𝑥+∞ < (𝐹‘𝑦) |
10 | fveq2 6191 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq2d 4665 | . . . 4 ⊢ (𝑥 = 𝑦 → (+∞ < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑦))) |
12 | 1, 2, 3, 9, 11 | cbvrab 3198 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)}) |
14 | pimgtpnf2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
15 | 14 | ffvelrnda 6359 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
16 | 15 | rexrd 10089 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
17 | pnfxr 10092 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → +∞ ∈ ℝ*) |
19 | 15 | ltpnfd 11955 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) < +∞) |
20 | 16, 18, 19 | xrltled 39486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ≤ +∞) |
21 | 16, 18 | xrlenltd 10104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹‘𝑦))) |
22 | 20, 21 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ +∞ < (𝐹‘𝑦)) |
23 | 22 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) |
24 | rabeq0 3957 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) | |
25 | 23, 24 | sylibr 224 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅) |
26 | 13, 25 | eqtrd 2656 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 ∀wral 2912 {crab 2916 ∅c0 3915 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 ℝcr 9935 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 |
This theorem is referenced by: smfpimgtxr 40988 |
Copyright terms: Public domain | W3C validator |