| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4656 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) |
| 2 | 1 | rabbidv 3189 |
. . . . 5
⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
| 3 | 2 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
| 4 | | smfpimgtxr.d |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
| 5 | | smfpimgtxr.x |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐹 |
| 6 | 5 | nfdm 5367 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
𝐹 |
| 7 | 4, 6 | nfcxfr 2762 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐷 |
| 8 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
| 9 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑦-∞
< (𝐹‘𝑥) |
| 10 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥-∞ |
| 11 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥
< |
| 12 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑦 |
| 13 | 5, 12 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐹‘𝑦) |
| 14 | 10, 11, 13 | nfbr 4699 |
. . . . . . . 8
⊢
Ⅎ𝑥-∞
< (𝐹‘𝑦) |
| 15 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 16 | 15 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
| 17 | 7, 8, 9, 14, 16 | cbvrab 3198 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)}) |
| 19 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
| 20 | | smfpimgtxr.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 21 | | smfpimgtxr.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| 22 | 20, 21, 4 | smff 40941 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 23 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐹:𝐷⟶ℝ) |
| 24 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
| 25 | 23, 24 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
| 26 | 19, 25 | pimgtmnf 40932 |
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
| 27 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → 𝐷 = 𝐷) |
| 28 | 18, 26, 27 | 3eqtrd 2660 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
| 29 | 28 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
| 30 | 3, 29 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
| 31 | 20, 21, 4 | smfdmss 40942 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 32 | 20, 31 | restuni4 39304 |
. . . . . 6
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
𝐷) |
| 33 | 32 | eqcomd 2628 |
. . . . 5
⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
| 34 | 21 | dmexd 39422 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 ∈ V) |
| 35 | 4, 34 | syl5eqel 2705 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
| 36 | | eqid 2622 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
| 37 | 20, 35, 36 | subsalsal 40577 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 38 | 37 | salunid 40571 |
. . . . 5
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷)
∈ (𝑆
↾t 𝐷)) |
| 39 | 33, 38 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 40 | 39 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 41 | 30, 40 | eqeltrd 2701 |
. 2
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 42 | | neqne 2802 |
. . . 4
⊢ (¬
𝐴 = -∞ → 𝐴 ≠ -∞) |
| 43 | 42 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
| 44 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) |
| 45 | 44 | rabbidv 3189 |
. . . . . . . 8
⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
| 46 | 45 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
| 47 | 5, 22 | pimgtpnf2 40917 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| 48 | 47 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| 49 | 46, 48 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
| 50 | 37 | 0sald 40568 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 51 | 50 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 52 | 49, 51 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 53 | 52 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 54 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) |
| 55 | | smfpimgtxr.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 56 | 54, 55 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈
ℝ*) |
| 57 | | simplr 792 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) |
| 58 | | neqne 2802 |
. . . . . . 7
⊢ (¬
𝐴 = +∞ → 𝐴 ≠ +∞) |
| 59 | 58 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
| 60 | 56, 57, 59 | xrred 39581 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈
ℝ) |
| 61 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 62 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 63 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 64 | 5, 61, 62, 4, 63 | smfpreimagtf 40976 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 65 | 54, 60, 64 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 66 | 53, 65 | pm2.61dan 832 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 67 | 43, 66 | syldan 487 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 68 | 41, 67 | pm2.61dan 832 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |