| Step | Hyp | Ref
| Expression |
| 1 | | df-om 7066 |
. 2
⊢ ω =
{𝑥 ∈ On ∣
∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧)} |
| 2 | | onsssuc 5813 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ suc 𝑥)) |
| 3 | | ontri1 5757 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 4 | 2, 3 | bitr3d 270 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 5 | 4 | ancoms 469 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 6 | | limeq 5735 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (Lim 𝑦 ↔ Lim 𝑧)) |
| 7 | 6 | notbid 308 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (¬ Lim 𝑦 ↔ ¬ Lim 𝑧)) |
| 8 | 7 | elrab 3363 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)) |
| 9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))) |
| 10 | 5, 9 | imbi12d 334 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → ((𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 11 | 10 | pm5.74da 723 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))) |
| 12 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 13 | | limelon 5788 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On) |
| 14 | 12, 13 | mpan 706 |
. . . . . . . . . 10
⊢ (Lim
𝑧 → 𝑧 ∈ On) |
| 15 | 14 | pm4.71ri 665 |
. . . . . . . . 9
⊢ (Lim
𝑧 ↔ (𝑧 ∈ On ∧ Lim 𝑧)) |
| 16 | 15 | imbi1i 339 |
. . . . . . . 8
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ ((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥 ∈ 𝑧)) |
| 17 | | impexp 462 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (Lim 𝑧 → 𝑥 ∈ 𝑧))) |
| 18 | | con34b 306 |
. . . . . . . . . 10
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧)) |
| 19 | | ibar 525 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ On → (¬ Lim
𝑧 ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))) |
| 20 | 19 | imbi2d 330 |
. . . . . . . . . 10
⊢ (𝑧 ∈ On → ((¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 21 | 18, 20 | syl5bb 272 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 22 | 21 | pm5.74i 260 |
. . . . . . . 8
⊢ ((𝑧 ∈ On → (Lim 𝑧 → 𝑥 ∈ 𝑧)) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 23 | 16, 17, 22 | 3bitri 286 |
. . . . . . 7
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 24 | 11, 23 | syl6rbbr 279 |
. . . . . 6
⊢ (𝑥 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))) |
| 25 | | impexp 462 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 26 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ suc 𝑥) |
| 27 | | suceloni 7013 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
| 28 | | onelon 5748 |
. . . . . . . . . . . 12
⊢ ((suc
𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ On) |
| 29 | 28 | ex 450 |
. . . . . . . . . . 11
⊢ (suc
𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ On)) |
| 30 | 27, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ On)) |
| 31 | 30 | ancrd 577 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → (𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥))) |
| 32 | 26, 31 | impbid2 216 |
. . . . . . . 8
⊢ (𝑥 ∈ On → ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) ↔ 𝑧 ∈ suc 𝑥)) |
| 33 | 32 | imbi1d 331 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 34 | 25, 33 | syl5bbr 274 |
. . . . . 6
⊢ (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 35 | 24, 34 | bitrd 268 |
. . . . 5
⊢ (𝑥 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 36 | 35 | albidv 1849 |
. . . 4
⊢ (𝑥 ∈ On → (∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ ∀𝑧(𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 37 | | dfss2 3591 |
. . . 4
⊢ (suc
𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim
𝑦} ↔ ∀𝑧(𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) |
| 38 | 36, 37 | syl6bbr 278 |
. . 3
⊢ (𝑥 ∈ On → (∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) |
| 39 | 38 | rabbiia 3185 |
. 2
⊢ {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧)} = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}} |
| 40 | 1, 39 | eqtri 2644 |
1
⊢ ω =
{𝑥 ∈ On ∣ suc
𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim
𝑦}} |