Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Visualization version   GIF version

Theorem pmapglb2xN 35058
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 35057, where we read 𝑆 as 𝑆(𝑖). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows 𝐼 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2xN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Distinct variable groups:   𝐴,𝑖   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 34649 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2622 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 34480 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6195 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 35053 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2656 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 rexeq 3139 . . . . . . . . 9 (𝐼 = ∅ → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ ∅ 𝑦 = 𝑆))
1211abbidv 2741 . . . . . . . 8 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆})
13 rex0 3938 . . . . . . . . 9 ¬ ∃𝑖 ∈ ∅ 𝑦 = 𝑆
1413abf 3978 . . . . . . . 8 {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆} = ∅
1512, 14syl6eq 2672 . . . . . . 7 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = ∅)
1615fveq2d 6195 . . . . . 6 (𝐼 = ∅ → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) = (𝐺‘∅))
1716fveq2d 6195 . . . . 5 (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝑀‘(𝐺‘∅)))
18 riin0 4594 . . . . 5 (𝐼 = ∅ → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝐴)
1917, 18eqeq12d 2637 . . . 4 (𝐼 = ∅ → ((𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
2010, 19syl5ibrcom 237 . . 3 (𝐾 ∈ HL → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
2120adantr 481 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
22 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
2322, 2, 7pmapglbx 35055 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
24 nfv 1843 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
25 nfra1 2941 . . . . . . . . . 10 𝑖𝑖𝐼 𝑆𝐵
2624, 25nfan 1828 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
27 simpr 477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑖𝐼)
28 simpll 790 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
29 rspa 2930 . . . . . . . . . . . . 13 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
3029adantll 750 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑆𝐵)
3122, 6, 7pmapssat 35045 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) ⊆ 𝐴)
3228, 30, 31syl2anc 693 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑀𝑆) ⊆ 𝐴)
3327, 32jca 554 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3433ex 450 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑖𝐼 → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
3526, 34eximd 2085 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖 𝑖𝐼 → ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
36 n0 3931 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ∃𝑖 𝑖𝐼)
37 df-rex 2918 . . . . . . . 8 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3835, 36, 373imtr4g 285 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴))
39383impia 1261 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
40 iinss 4571 . . . . . 6 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
4139, 40syl 17 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
42 sseqin2 3817 . . . . 5 ( 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4341, 42sylib 208 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4423, 43eqtr4d 2659 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
45443expia 1267 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
4621, 45pm2.61dne 2880 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915   ciin 4521  cfv 5888  Basecbs 15857  glbcglb 16943  1.cp1 17038  OPcops 34459  Atomscatm 34550  HLchlt 34637  pmapcpmap 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-ats 34554  df-hlat 34638  df-pmap 34790
This theorem is referenced by:  polval2N  35192
  Copyright terms: Public domain W3C validator