MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  porpss Structured version   Visualization version   GIF version

Theorem porpss 6941
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
porpss [] Po 𝐴

Proof of Theorem porpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 3707 . . . . 5 ¬ 𝑥𝑥
2 psstr 3711 . . . . 5 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
3 vex 3203 . . . . . . . 8 𝑥 ∈ V
43brrpss 6940 . . . . . . 7 (𝑥 [] 𝑥𝑥𝑥)
54notbii 310 . . . . . 6 𝑥 [] 𝑥 ↔ ¬ 𝑥𝑥)
6 vex 3203 . . . . . . . . 9 𝑦 ∈ V
76brrpss 6940 . . . . . . . 8 (𝑥 [] 𝑦𝑥𝑦)
8 vex 3203 . . . . . . . . 9 𝑧 ∈ V
98brrpss 6940 . . . . . . . 8 (𝑦 [] 𝑧𝑦𝑧)
107, 9anbi12i 733 . . . . . . 7 ((𝑥 [] 𝑦𝑦 [] 𝑧) ↔ (𝑥𝑦𝑦𝑧))
118brrpss 6940 . . . . . . 7 (𝑥 [] 𝑧𝑥𝑧)
1210, 11imbi12i 340 . . . . . 6 (((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
135, 12anbi12i 733 . . . . 5 ((¬ 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)) ↔ (¬ 𝑥𝑥 ∧ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)))
141, 2, 13mpbir2an 955 . . . 4 𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1514rgenw 2924 . . 3 𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
1615rgen2w 2925 . 2 𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧))
17 df-po 5035 . 2 ( [] Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 [] 𝑥 ∧ ((𝑥 [] 𝑦𝑦 [] 𝑧) → 𝑥 [] 𝑧)))
1816, 17mpbir 221 1 [] Po 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wral 2912  wpss 3575   class class class wbr 4653   Po wpo 5033   [] crpss 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-xp 5120  df-rel 5121  df-rpss 6937
This theorem is referenced by:  sorpss  6942  fin23lem40  9173  isfin1-3  9208  zorng  9326  fin2so  33396
  Copyright terms: Public domain W3C validator