![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaiocmnf | Structured version Visualization version GIF version |
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
preimaiocmnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
preimaiocmnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaiocmnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaiocmnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
2 | 1 | ffnd 6046 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 6339 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)}) |
5 | mnfxr 10096 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → -∞ ∈ ℝ*) |
7 | preimaiocmnf.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) | |
10 | 6, 8, 9 | iocleubd 39786 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ (-∞(,]𝐵)) → (𝐹‘𝑥) ≤ 𝐵) |
11 | 10 | ex 450 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) → (𝐹‘𝑥) ≤ 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
15 | 14 | adantlr 751 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → 𝐵 ∈ ℝ*) |
16 | 1 | ffvelrnda 6359 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
17 | 16 | rexrd 10089 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
18 | 17 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 16 | mnfltd 11958 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < (𝐹‘𝑥)) |
20 | 19 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → -∞ < (𝐹‘𝑥)) |
21 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ≤ 𝐵) | |
22 | 13, 15, 18, 20, 21 | eliocd 39730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ≤ 𝐵) → (𝐹‘𝑥) ∈ (-∞(,]𝐵)) |
23 | 22 | ex 450 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≤ 𝐵 → (𝐹‘𝑥) ∈ (-∞(,]𝐵))) |
24 | 12, 23 | impbid 202 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞(,]𝐵) ↔ (𝐹‘𝑥) ≤ 𝐵)) |
25 | 24 | rabbidva 3188 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞(,]𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
26 | 4, 25 | eqtrd 2656 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≤ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 class class class wbr 4653 ◡ccnv 5113 “ cima 5117 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 (,]cioc 12176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-ioc 12180 |
This theorem is referenced by: issmfle2d 41015 |
Copyright terms: Public domain | W3C validator |