Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaiocmnf Structured version   Visualization version   Unicode version

Theorem preimaiocmnf 39788
Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
preimaiocmnf.1  |-  ( ph  ->  F : A --> RR )
preimaiocmnf.2  |-  ( ph  ->  B  e.  RR* )
Assertion
Ref Expression
preimaiocmnf  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  =  { x  e.  A  |  ( F `  x )  <_  B } )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem preimaiocmnf
StepHypRef Expression
1 preimaiocmnf.1 . . . 4  |-  ( ph  ->  F : A --> RR )
21ffnd 6046 . . 3  |-  ( ph  ->  F  Fn  A )
3 fncnvima2 6339 . . 3  |-  ( F  Fn  A  ->  ( `' F " ( -oo (,] B ) )  =  { x  e.  A  |  ( F `  x )  e.  ( -oo (,] B ) } )
42, 3syl 17 . 2  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  =  { x  e.  A  |  ( F `  x )  e.  ( -oo (,] B
) } )
5 mnfxr 10096 . . . . . . . 8  |- -oo  e.  RR*
65a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F `  x )  e.  ( -oo (,] B ) )  -> -oo  e.  RR* )
7 preimaiocmnf.2 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( F `  x )  e.  ( -oo (,] B ) )  ->  B  e.  RR* )
9 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( F `  x )  e.  ( -oo (,] B ) )  ->  ( F `  x )  e.  ( -oo (,] B ) )
106, 8, 9iocleubd 39786 . . . . . 6  |-  ( (
ph  /\  ( F `  x )  e.  ( -oo (,] B ) )  ->  ( F `  x )  <_  B
)
1110ex 450 . . . . 5  |-  ( ph  ->  ( ( F `  x )  e.  ( -oo (,] B )  ->  ( F `  x )  <_  B
) )
1211adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
)  e.  ( -oo (,] B )  ->  ( F `  x )  <_  B ) )
135a1i 11 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  -> -oo  e.  RR* )
147adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( F `  x )  <_  B
)  ->  B  e.  RR* )
1514adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  ->  B  e.  RR* )
161ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  RR )
1716rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  RR* )
1817adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  ->  ( F `  x )  e.  RR* )
1916mnfltd 11958 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  -> -oo  <  ( F `  x ) )
2019adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  -> -oo  <  ( F `  x ) )
21 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  ->  ( F `  x )  <_  B )
2213, 15, 18, 20, 21eliocd 39730 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  ( F `  x )  <_  B )  ->  ( F `  x )  e.  ( -oo (,] B
) )
2322ex 450 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
)  <_  B  ->  ( F `  x )  e.  ( -oo (,] B ) ) )
2412, 23impbid 202 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
)  e.  ( -oo (,] B )  <->  ( F `  x )  <_  B
) )
2524rabbidva 3188 . 2  |-  ( ph  ->  { x  e.  A  |  ( F `  x )  e.  ( -oo (,] B ) }  =  { x  e.  A  |  ( F `  x )  <_  B } )
264, 25eqtrd 2656 1  |-  ( ph  ->  ( `' F "
( -oo (,] B ) )  =  { x  e.  A  |  ( F `  x )  <_  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-ioc 12180
This theorem is referenced by:  issmfle2d  41015
  Copyright terms: Public domain W3C validator