![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version |
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
psr1val | ⊢ 𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
2 | oveq2 6658 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1𝑜 ordPwSer 𝑟) = (1𝑜 ordPwSer 𝑅)) | |
3 | 2 | fveq1d 6193 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1𝑜 ordPwSer 𝑟)‘∅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
4 | df-psr1 19550 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1𝑜 ordPwSer 𝑟)‘∅)) | |
5 | fvex 6201 | . . . 4 ⊢ ((1𝑜 ordPwSer 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6282 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
7 | 0fv 6227 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
8 | 7 | eqcomi 2631 | . . . 4 ⊢ ∅ = (∅‘∅) |
9 | fvprc 6185 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
10 | reldmopsr 19473 | . . . . . 6 ⊢ Rel dom ordPwSer | |
11 | 10 | ovprc2 6685 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1𝑜 ordPwSer 𝑅) = ∅) |
12 | 11 | fveq1d 6193 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1𝑜 ordPwSer 𝑅)‘∅) = (∅‘∅)) |
13 | 8, 9, 12 | 3eqtr4a 2682 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅)) |
14 | 6, 13 | pm2.61i 176 | . 2 ⊢ (PwSer1‘𝑅) = ((1𝑜 ordPwSer 𝑅)‘∅) |
15 | 1, 14 | eqtri 2644 | 1 ⊢ 𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 1𝑜c1o 7553 ordPwSer copws 19355 PwSer1cps1 19545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-opsr 19360 df-psr1 19550 |
This theorem is referenced by: psr1crng 19557 psr1assa 19558 psr1tos 19559 psr1bas2 19560 vr1cl2 19563 ply1lss 19566 ply1subrg 19567 psr1plusg 19592 psr1vsca 19593 psr1mulr 19594 psr1ring 19617 psr1lmod 19619 psr1sca 19620 |
Copyright terms: Public domain | W3C validator |