MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1val Structured version   Visualization version   Unicode version

Theorem psr1val 19556
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
psr1val.1  |-  S  =  (PwSer1 `  R )
Assertion
Ref Expression
psr1val  |-  S  =  ( ( 1o ordPwSer  R ) `
 (/) )

Proof of Theorem psr1val
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 psr1val.1 . 2  |-  S  =  (PwSer1 `  R )
2 oveq2 6658 . . . . 5  |-  ( r  =  R  ->  ( 1o ordPwSer  r )  =  ( 1o ordPwSer  R ) )
32fveq1d 6193 . . . 4  |-  ( r  =  R  ->  (
( 1o ordPwSer  r ) `  (/) )  =  ( ( 1o ordPwSer  R ) `  (/) ) )
4 df-psr1 19550 . . . 4  |- PwSer1  =  ( r  e.  _V  |->  ( ( 1o ordPwSer  r ) `  (/) ) )
5 fvex 6201 . . . 4  |-  ( ( 1o ordPwSer  R ) `  (/) )  e. 
_V
63, 4, 5fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (PwSer1 `  R )  =  ( ( 1o ordPwSer  R ) `  (/) ) )
7 0fv 6227 . . . . 5  |-  ( (/) `  (/) )  =  (/)
87eqcomi 2631 . . . 4  |-  (/)  =  (
(/) `  (/) )
9 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  (PwSer1 `  R )  =  (/) )
10 reldmopsr 19473 . . . . . 6  |-  Rel  dom ordPwSer
1110ovprc2 6685 . . . . 5  |-  ( -.  R  e.  _V  ->  ( 1o ordPwSer  R )  =  (/) )
1211fveq1d 6193 . . . 4  |-  ( -.  R  e.  _V  ->  ( ( 1o ordPwSer  R ) `  (/) )  =  (
(/) `  (/) ) )
138, 9, 123eqtr4a 2682 . . 3  |-  ( -.  R  e.  _V  ->  (PwSer1 `  R )  =  ( ( 1o ordPwSer  R ) `  (/) ) )
146, 13pm2.61i 176 . 2  |-  (PwSer1 `  R
)  =  ( ( 1o ordPwSer  R ) `  (/) )
151, 14eqtri 2644 1  |-  S  =  ( ( 1o ordPwSer  R ) `
 (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   1oc1o 7553   ordPwSer copws 19355  PwSer1cps1 19545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-opsr 19360  df-psr1 19550
This theorem is referenced by:  psr1crng  19557  psr1assa  19558  psr1tos  19559  psr1bas2  19560  vr1cl2  19563  ply1lss  19566  ply1subrg  19567  psr1plusg  19592  psr1vsca  19593  psr1mulr  19594  psr1ring  19617  psr1lmod  19619  psr1sca  19620
  Copyright terms: Public domain W3C validator