| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psseq12d | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| psseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| psseq12d | ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | psseq1d 3699 | . 2 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
| 3 | psseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | psseq2d 3700 | . 2 ⊢ (𝜑 → (𝐵 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| 5 | 2, 4 | bitrd 268 | 1 ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ⊊ wpss 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-in 3581 df-ss 3588 df-pss 3590 |
| This theorem is referenced by: fin23lem32 9166 fin23lem34 9168 fin23lem35 9169 fin23lem41 9174 isf32lem5 9179 isf32lem6 9180 isf32lem11 9185 compssiso 9196 canthp1lem2 9475 chnle 28373 |
| Copyright terms: Public domain | W3C validator |