MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Structured version   Visualization version   GIF version

Theorem isf32lem11 9185
Description: Lemma for isfin3-2 9189. Remove hypotheses from isf32lem10 9184. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Distinct variable groups:   𝐹,𝑏   𝐺,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem isf32lem11
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → 𝐹:ω⟶𝒫 𝐺)
2 suceq 5790 . . . . . . . 8 (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐)
32fveq2d 6195 . . . . . . 7 (𝑏 = 𝑐 → (𝐹‘suc 𝑏) = (𝐹‘suc 𝑐))
4 fveq2 6191 . . . . . . 7 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
53, 4sseq12d 3634 . . . . . 6 (𝑏 = 𝑐 → ((𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ (𝐹‘suc 𝑐) ⊆ (𝐹𝑐)))
65cbvralv 3171 . . . . 5 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ↔ ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
76biimpi 206 . . . 4 (∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
873ad2ant2 1083 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ∀𝑐 ∈ ω (𝐹‘suc 𝑐) ⊆ (𝐹𝑐))
9 simp3 1063 . . 3 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → ¬ ran 𝐹 ∈ ran 𝐹)
10 suceq 5790 . . . . . 6 (𝑒 = 𝑑 → suc 𝑒 = suc 𝑑)
1110fveq2d 6195 . . . . 5 (𝑒 = 𝑑 → (𝐹‘suc 𝑒) = (𝐹‘suc 𝑑))
12 fveq2 6191 . . . . 5 (𝑒 = 𝑑 → (𝐹𝑒) = (𝐹𝑑))
1311, 12psseq12d 3701 . . . 4 (𝑒 = 𝑑 → ((𝐹‘suc 𝑒) ⊊ (𝐹𝑒) ↔ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)))
1413cbvrabv 3199 . . 3 {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} = {𝑑 ∈ ω ∣ (𝐹‘suc 𝑑) ⊊ (𝐹𝑑)}
15 eqid 2622 . . 3 (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)) = (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))
16 eqid 2622 . . 3 (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓))) = (( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))
17 eqid 2622 . . 3 (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙)))) = (𝑘𝐺 ↦ (℩𝑙(𝑙 ∈ ω ∧ 𝑘 ∈ ((( ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} ↦ ((𝐹) ∖ (𝐹‘suc ))) ∘ (𝑓 ∈ ω ↦ (𝑔 ∈ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)} (𝑔 ∩ {𝑒 ∈ ω ∣ (𝐹‘suc 𝑒) ⊊ (𝐹𝑒)}) ≈ 𝑓)))‘𝑙))))
181, 8, 9, 14, 15, 16, 17isf32lem10 9184 . 2 ((𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹) → (𝐺𝑉 → ω ≼* 𝐺))
1918impcom 446 1 ((𝐺𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹𝑏) ∧ ¬ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912  {crab 2916  cdif 3571  cin 3573  wss 3574  wpss 3575  𝒫 cpw 4158   cint 4475   class class class wbr 4653  cmpt 4729  ran crn 5115  ccom 5118  suc csuc 5725  cio 5849  wf 5884  cfv 5888  crio 6610  ωcom 7065  cen 7952  * cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765
This theorem is referenced by:  isf32lem12  9186  fin33i  9191
  Copyright terms: Public domain W3C validator