MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Visualization version   GIF version

Theorem isf32lem5 9179
Description: Lemma for isfin3-2 9189. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
Assertion
Ref Expression
isf32lem5 (𝜑 → ¬ 𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem isf32lem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . . 4 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . . 4 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
41, 2, 3isf32lem2 9176 . . 3 ((𝜑𝑎 ∈ ω) → ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
54ralrimiva 2966 . 2 (𝜑 → ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
6 isf32lem.d . . . . . . . 8 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
7 ssrab2 3687 . . . . . . . 8 {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ⊆ ω
86, 7eqsstri 3635 . . . . . . 7 𝑆 ⊆ ω
9 nnunifi 8211 . . . . . . 7 ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → 𝑆 ∈ ω)
108, 9mpan 706 . . . . . 6 (𝑆 ∈ Fin → 𝑆 ∈ ω)
1110adantl 482 . . . . 5 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ ω)
12 elssuni 4467 . . . . . . . . . . . . 13 (𝑏𝑆𝑏 𝑆)
13 nnon 7071 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → 𝑏 ∈ On)
14 omsson 7069 . . . . . . . . . . . . . . 15 ω ⊆ On
1514, 11sseldi 3601 . . . . . . . . . . . . . 14 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ On)
16 ontri1 5757 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑆 ∈ On) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1713, 15, 16syl2anr 495 . . . . . . . . . . . . 13 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏 𝑆 ↔ ¬ 𝑆𝑏))
1812, 17syl5ib 234 . . . . . . . . . . . 12 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → (𝑏𝑆 → ¬ 𝑆𝑏))
1918con2d 129 . . . . . . . . . . 11 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ 𝑏𝑆))
2019impr 649 . . . . . . . . . 10 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏𝑆)
216eleq2i 2693 . . . . . . . . . 10 (𝑏𝑆𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
2220, 21sylnib 318 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ 𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)})
23 suceq 5790 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
2423fveq2d 6195 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹‘suc 𝑦) = (𝐹‘suc 𝑏))
25 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2624, 25psseq12d 3701 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝐹‘suc 𝑦) ⊊ (𝐹𝑦) ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2726elrab3 3364 . . . . . . . . . 10 (𝑏 ∈ ω → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2827ad2antrl 764 . . . . . . . . 9 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → (𝑏 ∈ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ↔ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
2922, 28mtbid 314 . . . . . . . 8 (((𝜑𝑆 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑆𝑏)) → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))
3029expr 643 . . . . . . 7 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
31 imnan 438 . . . . . . 7 (( 𝑆𝑏 → ¬ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3230, 31sylib 208 . . . . . 6 (((𝜑𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ¬ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3332nrexdv 3001 . . . . 5 ((𝜑𝑆 ∈ Fin) → ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
34 eleq1 2689 . . . . . . . . 9 (𝑎 = 𝑆 → (𝑎𝑏 𝑆𝑏))
3534anbi1d 741 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3635rexbidv 3052 . . . . . . 7 (𝑎 = 𝑆 → (∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3736notbid 308 . . . . . 6 (𝑎 = 𝑆 → (¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
3837rspcev 3309 . . . . 5 (( 𝑆 ∈ ω ∧ ¬ ∃𝑏 ∈ ω ( 𝑆𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
3911, 33, 38syl2anc 693 . . . 4 ((𝜑𝑆 ∈ Fin) → ∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
40 rexnal 2995 . . . 4 (∃𝑎 ∈ ω ¬ ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)) ↔ ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4139, 40sylib 208 . . 3 ((𝜑𝑆 ∈ Fin) → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏)))
4241ex 450 . 2 (𝜑 → (𝑆 ∈ Fin → ¬ ∀𝑎 ∈ ω ∃𝑏 ∈ ω (𝑎𝑏 ∧ (𝐹‘suc 𝑏) ⊊ (𝐹𝑏))))
435, 42mt2d 131 1 (𝜑 → ¬ 𝑆 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  wpss 3575  𝒫 cpw 4158   cuni 4436   cint 4475  ran crn 5115  Oncon0 5723  suc csuc 5725  wf 5884  cfv 5888  ωcom 7065  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  isf32lem6  9180  isf32lem7  9181  isf32lem8  9182
  Copyright terms: Public domain W3C validator