Proof of Theorem isf32lem6
| Step | Hyp | Ref
| Expression |
| 1 | | isf32lem.f |
. . . 4
⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
| 2 | 1 | fveq1i 6192 |
. . 3
⊢ (𝐾‘𝐴) = (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) |
| 3 | | isf32lem.d |
. . . . . . . 8
⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
| 4 | | ssrab2 3687 |
. . . . . . . 8
⊢ {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} ⊆ ω |
| 5 | 3, 4 | eqsstri 3635 |
. . . . . . 7
⊢ 𝑆 ⊆
ω |
| 6 | | isf32lem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
| 7 | | isf32lem.b |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
| 8 | | isf32lem.c |
. . . . . . . 8
⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
| 9 | 6, 7, 8, 3 | isf32lem5 9179 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
| 10 | | isf32lem.e |
. . . . . . . 8
⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
| 11 | 10 | fin23lem22 9149 |
. . . . . . 7
⊢ ((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) → 𝐽:ω–1-1-onto→𝑆) |
| 12 | 5, 9, 11 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → 𝐽:ω–1-1-onto→𝑆) |
| 13 | | f1of 6137 |
. . . . . 6
⊢ (𝐽:ω–1-1-onto→𝑆 → 𝐽:ω⟶𝑆) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽:ω⟶𝑆) |
| 15 | | fvco3 6275 |
. . . . 5
⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
| 16 | 14, 15 | sylan 488 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴))) |
| 17 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ 𝑆 ∈ Fin) |
| 18 | 5, 17, 11 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐽:ω–1-1-onto→𝑆) |
| 19 | 18, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → 𝐽:ω⟶𝑆) |
| 20 | | ffvelrn 6357 |
. . . . . 6
⊢ ((𝐽:ω⟶𝑆 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
| 21 | 19, 20 | sylancom 701 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐽‘𝐴) ∈ 𝑆) |
| 22 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘𝑤) = (𝐹‘(𝐽‘𝐴))) |
| 23 | | suceq 5790 |
. . . . . . . 8
⊢ (𝑤 = (𝐽‘𝐴) → suc 𝑤 = suc (𝐽‘𝐴)) |
| 24 | 23 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑤 = (𝐽‘𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽‘𝐴))) |
| 25 | 22, 24 | difeq12d 3729 |
. . . . . 6
⊢ (𝑤 = (𝐽‘𝐴) → ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 26 | | eqid 2622 |
. . . . . 6
⊢ (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) |
| 27 | | fvex 6201 |
. . . . . . 7
⊢ (𝐹‘(𝐽‘𝐴)) ∈ V |
| 28 | | difexg 4808 |
. . . . . . 7
⊢ ((𝐹‘(𝐽‘𝐴)) ∈ V → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V) |
| 29 | 27, 28 | ax-mp 5 |
. . . . . 6
⊢ ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ∈ V |
| 30 | 25, 26, 29 | fvmpt 6282 |
. . . . 5
⊢ ((𝐽‘𝐴) ∈ 𝑆 → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 31 | 21, 30 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽‘𝐴)) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 32 | 16, 31 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 33 | 2, 32 | syl5eq 2668 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) = ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴)))) |
| 34 | | suceq 5790 |
. . . . . . . . 9
⊢ (𝑦 = (𝐽‘𝐴) → suc 𝑦 = suc (𝐽‘𝐴)) |
| 35 | 34 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑦 = (𝐽‘𝐴) → (𝐹‘suc 𝑦) = (𝐹‘suc (𝐽‘𝐴))) |
| 36 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = (𝐽‘𝐴) → (𝐹‘𝑦) = (𝐹‘(𝐽‘𝐴))) |
| 37 | 35, 36 | psseq12d 3701 |
. . . . . . 7
⊢ (𝑦 = (𝐽‘𝐴) → ((𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦) ↔ (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)))) |
| 38 | 37, 3 | elrab2 3366 |
. . . . . 6
⊢ ((𝐽‘𝐴) ∈ 𝑆 ↔ ((𝐽‘𝐴) ∈ ω ∧ (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)))) |
| 39 | 38 | simprbi 480 |
. . . . 5
⊢ ((𝐽‘𝐴) ∈ 𝑆 → (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴))) |
| 40 | 21, 39 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴))) |
| 41 | | df-pss 3590 |
. . . 4
⊢ ((𝐹‘suc (𝐽‘𝐴)) ⊊ (𝐹‘(𝐽‘𝐴)) ↔ ((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴)))) |
| 42 | 40, 41 | sylib 208 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴)))) |
| 43 | | pssdifn0 3944 |
. . 3
⊢ (((𝐹‘suc (𝐽‘𝐴)) ⊆ (𝐹‘(𝐽‘𝐴)) ∧ (𝐹‘suc (𝐽‘𝐴)) ≠ (𝐹‘(𝐽‘𝐴))) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ≠ ∅) |
| 44 | 42, 43 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝐹‘(𝐽‘𝐴)) ∖ (𝐹‘suc (𝐽‘𝐴))) ≠ ∅) |
| 45 | 33, 44 | eqnetrd 2861 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ≠ ∅) |